Learn More
Matriptase/MT-SP1 is a novel tumor-associated type II transmembrane serine protease that is highly expressed in the epidermis, thymic stroma, and other epithelia. A null mutation was introduced into the Matriptase/MT-SP1 gene of mice to determine the role of Matriptase/MT-SP1 in epidermal development and neoplasia. Matriptase/MT-SP1-deficient mice developed(More)
Epithelial-mesenchymal transition (EMT) is required for mesodermal differentiation during development. The zinc-finger transcription factor, Snail1, can trigger EMT and is sufficient to transcriptionally reprogram epithelial cells toward a mesenchymal phenotype during neoplasia and fibrosis. Whether Snail1 also regulates the behavior of terminally(More)
The urokinase plasminogen activator receptor-associated protein/Endo180 (uPARAP/Endo180) is a newly discovered member of the macrophage mannose receptor family that was reported to interact with ligand-bound urokinase plasminogen activator receptor (uPAR), matrix metalloprotease-13 (MMP-13), and collagen V on the cell surface. We have determined the sites(More)
Tissue inhibitor of metalloproteinases (TIMP)-2 is a highly conserved molecule, which binds both active and latent matrix metalloproteinase (MMP)-2. TIMP-2 is also involved in the activation of MMP-2 on the cell surface. A quantitative enzyme-linked immunosorbent assay (ELISA) was established and optimized for measurement of TIMP-2 in plasma. The capturing(More)
The uptake and lysosomal degradation of collagen by fibroblasts constitute a major pathway in the turnover of connective tissue. However, the molecular mechanisms governing this pathway are poorly understood. Here, we show that the urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180, a novel mesenchymally expressed member of the(More)
We recently reported that uPARAP/Endo180 can mediate the cellular uptake and lysosomal degradation of collagen by cultured fibroblasts. Here, we show that uPARAP/Endo180 has a key role in the degradation of collagen during mammary carcinoma progression. In the normal murine mammary gland, uPARAP/Endo180 is widely expressed in periductal fibroblast-like(More)
The plasminogen activation cascade system, directed by urokinase and the urokinase receptor, plays a key role in extracellular proteolysis during tissue remodeling. To identify molecular interaction partners of these trigger proteins on the cell, we combined covalent protein cross-linking with mass spectrometry based methods for peptide mapping and primary(More)
The uPAR-associated protein (uPARAP/Endo180), a type-1 membrane protein belonging to the mannose receptor family, is an endocytic receptor for collagen. Through this endocytic function, the protein takes part in a previously unrecognized mechanism of collagen turnover. uPARAP/Endo180 can bind and internalize both intact and partially degraded collagens. In(More)
The urokinase-mediated plasminogen activation system plays a central role in the extracellular proteolytic degradation reactions in cancer invasion. In this review article we discuss a number of recent findings identifying a new cellular receptor protein, uPARAP, that interacts with components of this proteolytic system. uPARAP is a high molecular weight(More)
Collagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains, the function of which is poorly known. The endocytic collagen(More)