Learn More
Estrogens have been described to induce synaptogenesis in principal neurons of the hippocampus and have been shown to be synthesized and released by exactly these neurons. Here, we have focused on the significance of local estrogen synthesis on spine synapse formation and the synthesis of synaptic proteins. To this end, we reduced hippocampal estrogen(More)
Inhibitors of aromatase, the final enzyme of estradiol synthesis, are suspected of inducing memory deficits in women. In previous experiments, we found hippocampal spine synapse loss in female mice that had been treated with letrozole, a potent aromatase inhibitor. In this study, we therefore focused on the effects of letrozole on long-term potentiation(More)
Previous studies have shown that synapses and expression of synaptic proteins in hippocampal neurons are regulated by hippocampus-derived estradiol. Here, we compared the effects of this paracrine regulation in different hippocampal regions. In tissue sections, immunohistochemistry followed by semiquantitative image analysis revealed a three-fold higher(More)
Recently, inhibition of estrogen synthesis by aromatase inhibitors has become a favored therapy for breast cancer in postmenopausal women. Estrogen is, however, important for synapse formation in the hippocampus. Inhibition of aromatase induces spine synapse loss in organotypic hippocampal slice cultures. We therefore studied the effect of systemic(More)
Ovarian oestrogens have been postulated to be neuroprotective. It has also been shown that considerable amounts of oestrogens are synthesised in hippocampal neurones. In the present study, we focused on a potential role of hippocampus-derived oestradiol compared to gonad-derived oestradiol on axon outgrowth of hippocampal neurones. To address the role of(More)
Ovarian oestrogens have been demonstrated to influence neurogenesis in the dentate gyrus. As considerable amounts of oestrogens are synthesized in hippocampal neurones, we focused on the role of hippocampus-derived estradiol on proliferation and apoptosis of granule cells in vitro. We used hippocampal dispersion cultures, which allowed for cultivation of(More)
Hippocampal neurons are capable of synthesizing estradiol de novo. Estradiol synthesis can be suppressed by aromatase inhibitors and by knock-down of steroid acute regulatory protein (StAR), whereas elevated levels of substrates of steroidogenesis enhance estradiol synthesis. In rat hippocampal cultures, the expression of estrogen receptors (ERs) and(More)
Cholesterol of glial origin promotes synaptogenesis (Mauch et al., (2001) Science 294:1354-1357). Because in the hippocampus local estradiol synthesis is essential for synaptogenesis, we addressed the question of whether cholesterol-promoted synapse formation results from the function of cholesterol as a precursor of estradiol synthesis in this brain area.(More)
Studies on the role of 17β-estradiol (E2) in the hippocampus have mainly focused on CA1 and CA3 regions, whereas in dentate gyrus (DG), its role is largely unknown. Here, we examined potential functions of E2 in DG, particularly during development. Immunohistochemistry and in situ hybridization revealed abundance of estrogen receptor (ER)α, but not ERβ,(More)
Estradiol plays essential roles in the modulation of synaptic plasticity and neuroprotection in males as well as in females, as has been shown particularly in the hippocampus. Although it has long been known that aromatase, the final enzyme in estrogen synthesis, is expressed in the hippocampus, a new paradigm emerged when it was shown that estradiol is(More)