Lars Fahl Lundegaard

Learn More
Of the simple diatomic molecules, oxygen is the only one to carry a magnetic moment. This makes solid oxygen particularly interesting: it is considered a 'spin-controlled' crystal that displays unusual magnetic order. At very high pressures, solid oxygen changes from an insulating to a metallic state; at very low temperatures, it even transforms to a(More)
We describe an x-ray diffraction study of liquid Cs at high pressure and temperature conducted in order to characterize the structural changes associated with the complex melting curve and phase transitions observed in the solid phases. At 3.9 GPa we observe a discontinuity in the density of the liquid accompanied by a decrease in the coordination number(More)
Sodium exhibits a pronounced minimum of the melting temperature at approximately 118 gigapascals and 300 kelvin. Using single-crystal high-pressure diffraction techniques, we found that the minimum of the sodium melting curve is associated with a concentration of seven different crystalline phases. Slight changes in pressure and/or temperature induce(More)
At pressures above a megabar (100 GPa), sodium crystallizes in a number of complex crystal structures with unusually low melting temperatures, reaching as low as 300 K at 118 GPa. We have utilized this unique behavior at extreme pressures to grow a single crystal of sodium at 108 GPa, and have investigated the complex crystal structure at this pressure(More)
Experimentally, we have found that among the "complicated" phases of potassium at intermediate pressures is one which has the same space group as the double hexagonal-close-packed structure, although its atomic coordination is completely different. Calculations on this P6(3)/mmc (hP4) structure as a function of pressure show three isostructural transitions(More)
Elemental barium adopts a series of high-pressure phases with such complex crystal structures that some of them have eluded structure determination for many years. Using single-crystal synchrotron X-ray diffraction and new data analysis strategies, we have now solved the most complex of these crystal structures, that of phase Ba-IVc at 19 GPa. It is a(More)
Using quasi-simultaneous in situ PXRD and XANES, the direct correlation between the oxidation state of Cu ions in the commercially relevant deNOx NH3 -SCR zeolite catalyst Cu-CHA and the Cu ion migration in the zeolitic pores was revealed during catalytic activation experiments. A comparison with recent reports further reveals the high sensitivity of the(More)
In this paper we provide a review of the revolution that has taken place over the past few years in our ability to produce and exploit ultra-bright, ultra-short pulses of X-radiation. For some time, nanosecond and picosecond optical lasers have been used to generate K-shell line radiation to interrogate rapid structural changes in matter. A good example of(More)
Accurate structural models of reaction centres in zeolite catalysts are a prerequisite for mechanistic studies and further improvements to the catalytic performance. The Rietveld/maximum entropy method is applied to synchrotron powder X-ray diffraction data on fully dehydrated CHA-type zeolites with and without loading of catalytically active Cu(2+) for the(More)