Lars-Erik Janlert

Learn More
Recognizing activities based on an actor's object manipulation is an important research approach within ubiquitous computing. We present an approach which complements object manipulation with an actor's situational information by viewing the everyday objects used by the actor to perform his/her activities from an " egocentric perspective ". Two concepts,(More)
— This paper describes our efforts in modeling and tracking a human agent's situation based on their possibilities to perceive and act upon objects (both physical and virtual) within smart environments. A Situative Space Model is proposed. WLAN signal-strength-based situative space tracking system that positions objects within individual situative spaces(More)
—Two methods for behavior recognition are presented and evaluated. Both methods are based on the dynamic temporal difference algorithm Predictive Sequence Learning (PSL) which has previously been proposed as a learning algorithm for robot control. One strength of the proposed recognition methods is that the model PSL builds to recognize behaviors is(More)
Smart environments worthy of the name need to capture, interpret, and support human activities that take place within their realms. Most existing efforts tend to focus on either real world activities or activities taking place in the virtual world accessed through digital devices. However, as digital computation continues to permeate our everyday real world(More)
Designers of mobile context-aware systems are struggling with the problem of conceptually incorporating the real world into the system design. We present a body-centric modeling framework (as opposed to device-centric) that incorporates physical and virtual objects of interest on the basis of proximity and human perception, framed in the context of an(More)
The visions of ambient intelligence demand novel interaction paradigms that enable designers and system developers to frame and manage the dynamic and complex interaction between humans and environments populated with physical (real) and virtual (digital) objects of interest. So far, many proposed approaches have adhered to a device-centric stance when(More)
— The landscape of ubiquitous computing comprising of numerous interconnected computing devices seamlessly integrated within everyday environments introduces a need to do research beyond human-computer interaction: in particular incorporate human-environment interaction. While the technological advancements have driven the field of ubiquitous computing, the(More)