Lars B. Wahlbin

Learn More
Interior a priori error estimates in the maximum norm are derived from interior Ritz-Galerkin equations which are common to a class of methods used in approximating solutions of second order elliptic boundary value problems. The estimates are valid for a large class of piecewise polynomial subspaces used in practice, which are defined on quasi-uniform(More)
For a model convection-dominated singularly perturbed convection-diffusion problem, it is shown that crosswind smear in the numerical streamline diffusion finite element method is minimized by introducing a judicious amount of artificial crosswind diffusion. The ensuing method with piecewise linear elements converges with a pointwise accuracy of almost hi/A(More)
The numerical solution of a parabolic equation with memory is considered. The equation is first discretized in time by means of the discontinuous Galerkin method with piecewise constant or piecewise linear approximating functions. The analysis presented allows variable time steps which, as will be shown, can then efficiently be selected to match(More)
A class of a posteriori estimators is studied for the error in the maximum-norm of the gradient on single elements when the finite element method is used to approximate solutions of second order elliptic problems. The meshes are unstructured and, in particular, it is not assumed that there are any known superconvergent points. The estimators are based on(More)
We consider finite element operators defined on “rough” functions in a bounded polyhedron Ω in RN . Insisting on preserving positivity in the approximations, we discover an intriguing and basic difference between approximating functions which vanish on the boundary of Ω and approximating general functions which do not. We give impossibility results for(More)