Learn More
Conifers have dominated forests for more than 200 million years and are of huge ecological and economic importance. Here we present the draft assembly of the 20-gigabase genome of Norway spruce (Picea abies), the first available for any gymnosperm. The number of well-supported genes (28,354) is similar to the >100 times smaller genome of Arabidopsis(More)
We present GSR, a probabilistic model integrating gene duplication, sequence evolution, and a relaxed molecular clock for substitution rates, that enables genomewide analysis of gene families. The gene duplication and loss process is a major cause for incongruence between gene and species tree, and deterministic methods have been developed to explain such(More)
Gene tree and species tree reconstruction, orthology analysis and reconciliation, are problems important in multigenome-based comparative genomics and biology in general. In the present paper, we advance the frontier of these areas in several respects and provide important computational tools. First, exact algorithms are given for several probabilistic(More)
Replacement rate matrices describe the process of evolution at one position in a protein and are used in many applications where proteins are studied with an evolutionary perspective. Several general matrices have been suggested and have proved to be good approximations of the real process. However, there are data for which general matrices are(More)
SUMMARY PrIME-DLRS (or colloquially: 'Delirious') is a phylogenetic software tool to simultaneously infer and reconcile a gene tree given a species tree. It accounts for duplication and loss events, a relaxed molecular clock and is intended for the study of homologous gene families, for example in a comparative genomics setting involving multiple species.(More)
Lateral gene transfer (LGT)--which transfers DNA between two non-vertically related individuals belonging to the same or different species--is recognized as a major force in prokaryotic evolution, and evidence of its impact on eukaryotic evolution is ever increasing. LGT has attracted much public attention for its potential to transfer pathogenic elements(More)
The use of short reads from High Throughput Sequencing (HTS) techniques is now commonplace in de novo assembly. Yet, obtaining contiguous assemblies from short reads is challenging, thus making scaffolding an important step in the assembly pipeline. Different algorithms have been proposed but many of them use the number of read pairs supporting a linking of(More)
Gene duplication is postulated to have played a major role in the evolution of biological novelty. Here, gene duplication is examined across levels of biological organization in an attempt to create a unified picture of the mechanistic process by which gene duplication can have played a role in generating biodiversity. Neofunctionalization and(More)
The genome sequence of Populus trichocarpa was screened for genes encoding cellulose synthases by using full-length cDNA sequences and ESTs previously identified in the tissue specific cDNA libraries of other poplars. The data obtained revealed 18 distinct CesA gene sequences in P. trichocarpa. The identified genes were grouped in seven gene pairs, one(More)
Phylogeny is both a fundamental tool in biology and a rich source of fascinating modeling and algorithmic problems. Today's wealth of sequenced genomes makes it increasingly important to understand evolutionary events such as duplications, losses, transpositions, inversions, lateral transfers, and domain shuffling. We focus on the gene duplication event,(More)