Lars A.T. Meijer

Learn More
We have previously reported a gene expression signature that is a powerful predictor of poor clinical outcome in breast cancer. Among the seventy genes in this expression profile is a gene of unknown function: TSPYL5 (TSPY-like 5, also known as KIAA1750). TSPYL5 is located within a small region at chromosome 8q22 that is frequently amplified in breast(More)
The Forkhead transcription factor FoxM1 is an important regulator of gene expression during the G(2) phase. Here, we show that FoxM1 transcriptional activity is kept low during G(1)/S through the action of its N-terminal autoinhibitory domain. We found that cyclin A/cdk complexes are required to phosphorylate and activate FoxM1 during G(2) phase. Deletion(More)
Cyclic adenosine monophosphate (cAMP) is a second messenger that relays a wide range of hormone responses. In this paper, we demonstrate that the nuclear pore component RanBP2 acts as a negative regulator of cAMP signaling through Epac1, a cAMP-regulated guanine nucleotide exchange factor for Rap. We show that Epac1 directly interacts with the zinc fingers(More)
The precursor terminal protein pTP is the primer for the initiation of adenovirus (Ad) DNA replication and forms a heterodimer with Ad DNA polymerase (pol). Pol can couple dCTP to pTP directed by the fourth nucleotide of the viral genome template strand in the absence of other replication proteins, which suggests that pTP/pol binding destabilizes the origin(More)
To identify potential biomarkers of therapy response, we have previously done a large-scale gain-of-function genetic screen to identify genes whose expression confers resistance to histone deacetylase inhibitors (HDACI). This genetic screen identified two genes with a role in retinoic acid signaling, suggesting that HDACIs target retinoic acid signaling as(More)
The small GTPase Rap1 is required for proper cell-cell junction formation and also plays a key role in mediating cAMP-induced tightening of adherens junctions and subsequent increased barrier function of endothelial cells. To further study how Rap1 controls barrier function, we performed quantitative global phosphoproteomics in human umbilical vein(More)
Forkhead box O (FOXO) transcription factors are involved in various cellular processes, including cell proliferation, stress resistance, metabolism, and longevity. Regulation of FOXO transcriptional activity occurs mainly through a variety of post-translational modifications, including phosphorylation, acetylation, and ubiquitination. Here we describe(More)
The human transcription factor Oct-1 can stimulate transcription from a variety of promoters by interacting with the coactivators OBF-1/OCA-B/BOB-1, SNAP190 and VP16. These proteins contact Oct-1 regions different from the DNA binding surface. Oct-1 also stimulates the DNA replication of adenovirus through its DNA binding site in the origin. The Oct-1 POU(More)
  • 1