Larry M. Jordan

Learn More
The intrinsic properties of mammalian spinal motoneurons provide them with the capability to produce high rates of sustained firing in response to transient inputs (bistability). Even though it has been suggested that a persistent dendritic calcium current is responsible for the depolarizing drive underlying this firing property, such a current has not been(More)
Neurons in the brainstem implicated in the initiation of locomotion include glutamatergic, noradrenergic (NA), dopaminergic (DA), and serotonergic (5-HT) neurons giving rise to descending tracts. Glutamate antagonists block mesencephalic locomotor region-induced and spontaneous locomotion, and glutamatergic agonists induce locomotion in spinal animals. NA(More)
Over the past 40 years, much has been learned about the role of serotonin in spinal cord reflex modulation and locomotor pattern generation. This review presents an historical overview and current perspective of this literature. The primary focus is on the mammalian nervous system. However, where relevant, major insights provided by lower vertebrate models(More)
Several "locomotor regions" of the mammalian brain stem can be stimulated, either electrically or chemically, to induce locomotion. Active cells labeled with c-fos within the mesencephalic locomotor region (MLR) have been found in the periaqueductal gray, the cuneiform nucleus, the pedunculopontine nucleus, and the locus coeruleus. Different subsets of(More)
Repetitive firing of motoneurones was examined in decerebrate, unanaesthetised, paralysed cats in which fictive locomotion was induced by stimulation of the mesencephalic locomotor region. Repetitive firing produced by sustained intracellular current injection was compared with repetitive firing observed during fictive locomotion in 17 motoneurones. During(More)
The descending pathways from the brainstem locomotor areas were investigated by utilizing reversible cooling (to block synaptic or fiber transmission) and irreversible subtotal lesions of the brainstem or spinal cord (C2-C3 level). Experiments were conducted on decerebrate cats induced to walk on a treadmill by electrical stimulation of the brainstem.(More)
The spinal neurons involved in the control of locomotion in mammals have not been identified, and a major step that is necessary for this purpose is to determine where these cells are likely to be located. The principal objective of this study was to localize lumbar spinal interneurons activated by stimulation of the mesencephalic locomotor region (MLR) of(More)
The synaptic pathways of mesencephalic locomotor region (MLR)-evoked excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) recorded from lumbar motoneurons of unanesthetized decerebrate cats during fictive locomotion were analyzed prior to, during, and after cold block of the medial reticular formation (MedRF) or the low thoracic ventral(More)
Locomotion can be induced in rodents by direct application 5-hydroxytryptamine (5-HT) onto the spinal cord. Previous studies suggest important roles for 5-HT7 and 5-HT2A receptors in the locomotor effects of 5-HT. Here we show for the first time that activation of a discrete population of 5-HT neurons in the rodent brain stem produces locomotion and that(More)
Experiments were conducted on decerebrate adult cats to examine the effect of brainstem-evoked fictive locomotion on the threshold voltage (Vth) at which action potentials were initiated in hindlimb motoneurones. Measurements of the voltage threshold of the first spike evoked by intracellular injection of depolarizing ramp currents or square pulses were(More)