Larry Benowitz

Learn More
Several lines of investigation have helped clarify the role of GAP-43 (FI, B-50 or neuromodulin) in regulating the growth state of axon terminals. In transgenic mice, overexpression of GAP-43 leads to the spontaneous formation of new synapses and enhanced sprouting after injury. Null mutation of the GAP-43 gene disrupts axonal pathfinding and is generally(More)
In mature mammals, retinal ganglion cells (RGCs) are unable to regenerate their axons after optic nerve injury, and they soon undergo apoptotic cell death. However, a small puncture wound to the lens enhances RGC survival and enables these cells to regenerate their axons into the normally inhibitory environment of the optic nerve. Even when the optic nerve(More)
In birds, superficial laminae of the optic tectum receive a massive retinal input; the tectum in turn projects upon the nucleus rotundus thalami, which then sends its efferents to the ectostriatal core of the telencephalon. To examine the detailed organization of this principal ascending visual pathway, small injections of the marker horseradish peroxidase(More)
The optic nerve, like most mature CNS pathways, does not regenerate after injury. Through unknown mechanisms, however, macrophage activation in the eye stimulates retinal ganglion cells (RGCs) to regenerate long axons beyond the site of optic nerve injury. Here we identify the calcium (Ca(2+))-binding protein oncomodulin as a potent macrophage-derived(More)
In the adult mammalian CNS, chondroitin sulfate proteoglycans (CSPGs) and myelin-associated inhibitors (MAIs) stabilize neuronal structure and restrict compensatory sprouting following injury. The Nogo receptor family members NgR1 and NgR2 bind to MAIs and have been implicated in neuronal inhibition. We found that NgR1 and NgR3 bind with high affinity to(More)
After optic nerve injury in mature mammals, retinal ganglion cells (RGCs) are normally unable to regenerate their axons and undergo delayed apoptosis. However, if the lens is damaged at the time of nerve injury, many RGCs survive axotomy and regenerate their axons into the distal optic nerve. Lens injury induces macrophage activation, and we show here that(More)
Glaucoma is a widespread ocular disease characterized by a progressive loss of retinal ganglion cells (RGCs). Previous studies suggest that the cytokine tumor necrosis factor-alpha (TNF-alpha) may contribute to the disease process, although its role in vivo and its mechanism of action are unclear. To investigate pathophysiological mechanisms in glaucoma, we(More)
Cerebral infarct (stroke) often causes devastating and irreversible losses of function, in part because of the brain's limited capacity for anatomical reorganization. The purine nucleoside inosine has previously been shown to induce neurons to express a set of growth-associated proteins and to extend axons in culture and in vivo. We show here that in adult(More)
The inability of mature CNS neurons to regenerate injured axons has been attributed to a loss of inherent growth potential of cells and to inhibitory signals associated with myelin and the glial scar. The present study investigated two complementary issues: (1) whether mature CNS neurons can be stimulated to alter their gene expression profile and switch(More)
Photoreceptor apoptosis is a major cause of visual loss in retinal detachment (RD) and several other visual disorders, but the underlying mechanisms remain elusive. Recently, increased expression of monocyte chemoattractant protein 1 (MCP-1) was reported in vitreous humor samples of patients with RD and diabetic retinopathy as well as in the brain tissues(More)