Larisa P. Safonova

Learn More
The basic parameters for physiological measurements provided by near-infrared spectroscopy are the local absorption and scattering coefficients. For the adult human head, they have been difficult to measure noninvasively because of the layered structure of the head. The results of measurements of absorption and reduced scattering coefficients through the(More)
The aim of our study was to explore the possibility of detecting hemodynamic changes in the brain using the phase of the intensity modulated optical signal. To obtain optical signals with the highest possible signal-to-noise ratio, we performed a series of simultaneous NIRS-fMRI measurements, with subsequent correlation of the time courses of both(More)
Millisecond changes in the optical properties of the human brain during stimulation were detected in five volunteers using noninvasive frequency-domain near-infrared spectroscopy. During a motor stimulation task we found highly significant signals, which were directly related to neuronal activity and exhibited much more localized patterns than the slow(More)
PURPOSE Near-infrared spectrophotometry is used to measure flow, concentration, and oxygenation of hemoglobin in arterioles, capillaries, and venules several centimeters deep in tissue. The purpose of this study was to investigate the distribution of flow, concentration, and oxygenation of hemoglobin in calf muscle in patients with documented peripheral(More)
Cerebral hemodynamic responses due to normal aging may interfere with hormonal changes, drug therapy, diseases, life style, and other factors. Age-correlated alterations in cerebral vasculature and autoregulatory mechanisms are the subject of interest in many studies. Near-infrared spectroscopy (NIRS) is widely used for monitoring cerebral hemodynamics and(More)
We investigated the influence of the adipose tissue thickness (ATT) on near-infrared spectroscopy (NIRS) measurements of the absorption coefficient (mu a), the reduced scattering coefficient (mu s') and changes in concentrations of oxyhemoglobin ([O2Hb]) and deoxyhemoglobin ([HHb]). We used a frequency domain spectrometer and a special probe to generate(More)
Using non-invasive near infrared spectroscopy fast changes in the range of ms in the optical properties of neurons during brain activity have been described. Since the signal is small, the system to detect it has to be highly noise optimized. We used a frequency-domain tissue oximeter, whose laser diodes were modulated at 110 MHz and the amplitude (AC),(More)
Prototype models of an electrode system and a new multi-channel non-invasive impedance measuring system were designed and experimentally studied. The 32-channel rheographic system developed allows registration of the electrocardiogram (ECG) and the transthoracic rheogram (TTRG) simultaneousely with up to thirty precordial rheocardiograms (PRCG). The results(More)
  • 1