Larisa Bobrovskaya

Learn More
The rate-limiting enzyme in catecholamine synthesis is tyrosine hydroxylase. It is phosphorylated at serine (Ser) residues Ser8, Ser19, Ser31 and Ser40 in vitro, in situ and in vivo. A range of protein kinases and protein phosphatases are able to phosphorylate or dephosphorylate these sites in vitro. Some of these enzymes are able to regulate tyrosine(More)
The regulation of tyrosine hydroxylase (TH, the rate limiting enzyme involved in catecholamine synthesis) is critical for the acute and sustained release of catecholamines from adrenal medullary chromaffin cells, however the mechanisms involved have only ever been investigated under in vitro/in situ conditions. Here we explored the effects on, TH(More)
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine synthesis. Its activity is known to be controlled acutely (minutes) by phosphorylation and chronically (days) by protein synthesis. Using bovine adrenal chromaffin cells we found that nicotine, acting via nicotinic receptors, sustained the phosphorylation of TH at Ser40 for up to 48 h.(More)
Parkinson's disease (PD) is the second most common neurodegenerative disorder that is characterized by two major neuropathological hallmarks: the degeneration of dopaminergic neurons in the substantia nigra (SN) and the presence of Lewy bodies in the surviving SN neurons, as well as other regions of the central and peripheral nervous system. Animal models(More)
Manganese (Mn2+) is an essential metal involved in normal functioning of a range of physiological processes. However,occupational overexposure to Mn2+ causes neurotoxicity. The dopaminergic system is a particular target for Mn2+ neurotoxicity.Tyrosine hydroxylase (TH) is the rate limiting enzyme for dopamine synthesis and is regulated acutely by(More)
Tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, is regulated acutely by protein phosphorylation. No studies have systematically investigated the time course of TH phosphorylation in vivo in response to different stressors. We therefore determined the extent of TH phosphorylation at Ser19, Ser31, and Ser40 over a 40-min(More)
Striatal delivery of dopamine (DA) by midbrain substantia nigra pars compacta (SNc) neurons is vital for motor control and its depletion causes the motor symptoms of Parkinson's disease. While membrane potential changes or neuronal activity regulates tyrosine hydroxylase (TH, the rate limiting enzyme in catecholamine synthesis) expression in other(More)
The aim of this study was to determine the effect of angiotensin II (AII) on tyrosine hydroxylase (TOH) activity and phosphorylation in bovine adrenal chromaffin cells (BACCs). We report here that stimulation of BACCs with AII (100 nM) produced a significant increase in both TOH activity and phosphorylation over a period of 10 min. The increase in TOH(More)
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine synthesis. Its activity is controlled by PACAP, acutely by phosphorylation at Ser40 and chronically by protein synthesis. Using bovine adrenal chromaffin cells we found that PACAP, acting via the continuous activation of PACAP 1 receptors, sustained the phosphorylation of TH at Ser40 and(More)
We have previously shown that the phosphorylation of Ser19 in tyrosine hydroxylase can increase the rate of phosphorylation of Ser40 in tyrosine hydroxylase threefold in vitro. In this report we investigated the role of Ser19 on Ser40 phosphorylation in intact cells. Treatment of bovine chromaffin cells with anisomycin produced a twofold increase in Ser19(More)