Lara Ferrighi

Learn More
Electronic structure calculations have become an indispensable tool in many areas of materials science and quantum chemistry. Even though the Kohn-Sham formulation of the density-functional theory (DFT) simplifies the many-body problem significantly, one is still confronted with several numerical challenges. In this article we present the projector(More)
Kestutis Aidas,1 Celestino Angeli,2 Keld L. Bak,3 Vebjørn Bakken,4 Radovan Bast,5 Linus Boman,6 Ove Christiansen,7 Renzo Cimiraglia,2 Sonia Coriani,8 Pål Dahle,9 Erik K. Dalskov,10 Ulf Ekström,11 Thomas Enevoldsen,12 Janus J. Eriksen,7 Patrick Ettenhuber,7 Berta Fernández,13 Lara Ferrighi,14 Heike Fliegl,11 Luca Frediani,14 Kasper Hald,15 Asger Halkier,16(More)
We present a theory for the analytic calculation of frequency-dependent polarizability gradients, and apply the methodology to the calculation of coherent anti-Stokes Raman scattering (CARS). The formalism used is based on an open-ended theory for the calculation of frequency-dependent molecular response properties of arbitrary order, also including(More)
We have derived and implemented the solvent contribution to the cubic response function for the polarizable continuum model in its integral equation formulation. The present formulation is valid both at the Hartree-Fock and at the Kohn-Sham density functional levels of theory, because both bear the same formal description of the solvent contribution through(More)
We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M(1)); and 1 alkali, alkaline earth or 3d/4d transition metal atom (M(2)) plus two to five (BH(4))(-) groups, i.e.,(More)
We present the first implementation of the quadratic response function for multiconfigurational self-consistent-field wave functions of solvated molecules described by a polarizable continuum model employing a molecule-shaped cavity. We apply the methodology to the first hyperpolarizability beta and, in particular, the second-harmonic generation process for(More)
The two-photon absorption of a class of [2.2]paracyclophane derivatives has been studied using quadratic response and density functional theories. For the molecules investigated, several effects influencing the two-photon absorption spectra have been investigated, such as side-chain elongation, hydrogen bonding, the use of ionic species, and solvent(More)
Solvent effects on the two-photon absorption of a symmetrical diamino substituted distyrylbenzene chromophore have been studied using the density functional response theory in combination with the polarizable continuum model. It is shown that the dielectric medium has a rather small effect both on the bond length alternation and on the one-photon absorption(More)
The application of the recently developed second-order n-electron valence state perturbation theory (NEVPT2) to small carbonyl molecules (formaldehyde, acetaldehyde, and acetone) is presented. The adiabatic transition energies are computed for the singlet and triplet n-->pi(*), pi-->pi(*), and sigma-->pi(*) states performing a full geometry optimization of(More)
We present a theoretical study of the solvent-induced three-photon absorption cross section of a highly conjugated fluorene derivative, performed using density functional (DFT) cubic response theory in combination with the polarizable continuum model. The applicability of the often used two-state model is examined by comparison against the full DFT response(More)