Landry Charlier

Learn More
The molecular features that dominate the binding mode of agonists by a broadly tuned olfactory receptor are analyzed through a joint approach combining cell biology, calcium imaging, and molecular modeling. The odorant/receptor affinities, estimated through statistics accrued during molecular dynamics simulations, are in accordance with the experimental(More)
Providing a rationale that associates a chemical structure of an odorant to its induced perception has been sought for a long time. To achieve this, a detailed atomic structure of both the odorant and the olfactory receptor must be known. State-of-the-art techniques to model the 3D structure of an olfactory receptor in complex with various odorants are(More)
A joint approach combining free-energy calculations and calcium-imaging assays on the broadly tuned human 1G1 olfactory receptor is reported. The free energy of binding of ten odorants was computed by means of molecular-dynamics simulations. This state function allows separating the experimentally determined eight agonists from the two non-agonists. This(More)
We present a comparison of various computational approaches aiming at predicting the binding free energy in ligand-protein systems where the ligand is located within a highly hydrophobic cavity. The relative binding free energy between similar ligands is obtained by means of the thermodynamic integration (TI) method and compared to experimental data(More)
In this article we report calculations dedicated to estimate the selectivity of the Bombyx mori pheromone binding protein towards the two closely related pheromonal components Bombykol and Bombykal. The selectivity is quantified by the binding free-energy difference, obtained either by the thermodynamic integration or by the MM-GBSA approach. In the latter,(More)
A molecular dynamics investigation of the helical forms adopted by (1→4)-α-L-guluronan in explicit water environment was carried out. Single chains and duplexes were modeled at 300 K starting both from 21 or 32 helical conformations and in the presence of a neutralizing amount of Ca(2+) ions. All systems were allowed full conformational freedom. The initial(More)
A modeling of lignified secondary plant cell walls adapted to grass has been achieved, using molecular dynamics for time up to 180 ns, applied to systems composed of cellulose, xylan, water, and lignin. The overall model, which was 70 nm thick for a volume of 74.4 nm(3), consisted of two crystalline cellulose layers, each being two molecules deep, separated(More)
  • 1