Landry Charlier

Learn More
The molecular features that dominate the binding mode of agonists by a broadly tuned olfactory receptor are analyzed through a joint approach combining cell biology, calcium imaging, and molecular modeling. The odorant/receptor affinities, estimated through statistics accrued during molecular dynamics simulations, are in accordance with the experimental(More)
Providing a rationale that associates a chemical structure of an odorant to its induced perception has been sought for a long time. To achieve this, a detailed atomic structure of both the odorant and the olfactory receptor must be known. State-of-the-art techniques to model the 3D structure of an olfactory receptor in complex with various odorants are(More)
A joint approach combining free-energy calculations and calcium-imaging assays on the broadly tuned human 1G1 olfactory receptor is reported. The free energy of binding of ten odorants was computed by means of molecular-dynamics simulations. This state function allows separating the experimentally determined eight agonists from the two non-agonists. This(More)
In this article we report calculations dedicated to estimate the selectivity of the Bombyx mori pheromone binding protein towards the two closely related pheromonal components Bombykol and Bombykal. The selectivity is quantified by the binding free-energy difference, obtained either by the thermodynamic integration or by the MM-GBSA approach. In the latter,(More)
In this study, we used the Martini Coarse-Grained model with no applied restraints to predict the binding mode of some peptides to G-Protein Coupled Receptors (GPCRs). Both the Neurotensin-1 and the chemokine CXCR4 receptors were used as test cases. Their ligands, NTS8-13 and CVX15 peptides, respectively, were initially positioned in the surrounding water(More)
Heterotrimeric G-proteins' activation on the intracellular side of the cell membrane is initiated by stimulation of the G-Protein Coupled Receptors (GPCRs) extra-cellular part. This two-step activation mechanism includes (1) an exchange between GDP and GTP molecules in the G(α) subunit and (2) a dissociation of the whole G(αβγ) complex into two(More)
  • 1