Learn More
Signal-to-noise ratio (SNR), RF field (B(1)), and RF power requirement for human head imaging were examined at 7T and 4T magnetic field strengths. The variation in B(1) magnitude was nearly twofold higher at 7T than at 4T ( approximately 42% compared to approximately 23%). The power required for a 90 degrees pulse in the center of the head at 7T was(More)
Frequency-modulated (FM) pulses that function according to adiabatic principles are becoming increasingly popular in many areas of NMR. Often adiabatic pulses can extend experimental capabilities and minimize annoying experimental imperfections. Here, adiabatic principles and some of the current methods used to create these pulses are considered. The(More)
The use of body coils is favored for homogeneous excitation, and such coils are often paired with surface coils or arrays for sensitive reception in many MRI applications. While the body coil's physical size and resultant electrical length make this circuit difficult to design for any field strength, recent efforts to build efficient body coils for(More)
A technique is described for performing frequency-selective signal suppression with a high degree of tolerance to RF field inhomogeneity. The method is called B1-insensitive train to obliterate signal (BISTRO). BISTRO consists of multiple amplitude- and frequency-modulated (FM) pulses interleaved with spoiler gradients. BISTRO was developed for the purpose(More)
Most high-field MRI systems do not have the actively detuned body coils that are integral to clinical systems operating at 1.5T and lower field strengths. Therefore, many clinical applications requiring homogeneous volume excitation in combination with local surface coil reception are not easily implemented at high fields. To solve this problem for(More)
This work reports the preliminary results of the first human images at the new high-field benchmark of 9.4T. A 65-cm-diameter bore magnet was used together with an asymmetric 40-cm-diameter head gradient and shim set. A multichannel transmission line (transverse electromagnetic (TEM)) head coil was driven by a programmable parallel transceiver to control(More)
This work reports preliminary results from the first human cardiac imaging at 7 Tesla (T). Images were acquired using an eight-channel transmission line (TEM) array together with local B(1) shimming. The TEM array consisted of anterior and posterior plates closely positioned to the subjects' thorax. The currents in the independent elements of these arrays(More)
The objective of this study was to investigate the feasibility of whole-body imaging at 7T. To achieve this objective, new technology and methods were developed. Radio frequency (RF) field distribution and specific absorption rate (SAR) were first explored through numerical modeling. A body coil was then designed and built. Multichannel transmit and receive(More)
Carr-Purcell and Hahn spin-echo (SE) measurements were used to estimate the apparent transverse relaxation time constant (T2) of water and metabolites in human brain at 4T and 7T. A significant reduction in the T2 values of proton resonances (water, N-acetylaspartate, and creatine/phosphocreatine) was observed with increasing magnetic field strength and was(More)
At clinical MRI field strengths (1.5 and 3 T), quantitative maps of the longitudinal relaxation time T1 of the myocardium reveal diseased tissue without requiring contrast agents. Cardiac T1 maps can be measured by Look-Locker inversion recovery sequences such as ShMOLLI at 1.5 and 3 T. Cardiovascular MRI at a field strength of 7 T has recently become(More)