Lance C. Kam

Learn More
Mechanical forces play an increasingly recognized role in modulating cell function. This report demonstrates mechanosensing by T cells, using polyacrylamide gels presenting ligands to CD3 and CD28. Naive CD4 T cells exhibited stronger activation, as measured by attachment and secretion of IL-2, with increasing substrate elastic modulus over the range of(More)
Adoptive immunotherapy using cultured T cells holds promise for the treatment of cancer and infectious disease. Ligands immobilized on surfaces fabricated from hard materials such as polystyrene plastic are commonly employed for T cell culture. The mechanical properties of a culture surface can influence the adhesion, proliferation, and differentiation of(More)
Integrin-cadherin cross talk is an important aspect of cell function. We explored this signaling using substrates micropatterned with islands of fibronectin surrounded by E-cadherin, capturing the segregation of these signals in normal tissue. While MDCK cells were able to concurrently form adhesive structures with these two proteins, engagement of(More)
Mechanical forces have key roles in regulating activation of T cells and coordination of the adaptive immune response. A recent example is the ability of T cells to sense the rigidity of an underlying substrate through the T-cell receptor (TCR) coreceptor CD3 and CD28, a costimulation signal essential for cell activation. In this report, we show that these(More)
Wiscott Aldrich Syndrome protein (WASP) deficiency results in defects in calcium ion signaling, cytoskeletal regulation, gene transcription and overall T cell activation. The activation of WASP constitutes a key pathway for actin filament nucleation. Yet, when WASP function is eliminated there is negligible effect on actin polymerization at the(More)
We describe a method for producing high-resolution chemical patterns on surfaces to control the attachment and growth of cultured neurons. Microcontact printing has been extended to allow the printing of micron-scale protein lines aligned to an underlying pattern of planar microelectrodes. Poly-L-lysine (PL) lines have been printed on the electrode array(More)
The recognition events that mediate adaptive cellular immunity and regulate antibody responses depend on intercellular contacts between T cells and antigen-presenting cells (APCs). T-cell signalling is initiated at these contacts when surface-expressed T-cell receptors (TCRs) recognize peptide fragments (antigens) of pathogens bound to major(More)
The ability to pattern proteins and other biomolecules onto substrates is important for capturing the spatial complexity of the extracellular environment. Development of microcontact printing by the Whitesides group ( in the mid-1990s revolutionalized this field by making microelectronics/microfabrication techniques accessible(More)
The ability to pattern multiple bioactive cues on a surface is valuable for understanding how neurons interact with their complex extracellular environment. In this report, we introduce a set of methods for creating such surfaces, with the goals of understanding how developing neurons integrate multiple biologically relevant signals and as a tool for(More)