Learn More
Spinal muscular atrophy (SMA) is an autosomal recessive disorder in humans which results in the loss of motor neurons. It is caused by reduced levels of the survival motor neuron (SMN) protein as a result of loss or mutation of the SMN1 gene. SMN is encoded by two genes, SMN1 and SMN2, which essentially differ by a single nucleotide in exon 7. As a result,(More)
Clinical observations have revealed a strong correlation between loss of bone density in HIV-infected individuals, particularly in conjunction with the antiretroviral drug tenofovir, a nucleotide analog that inhibits HIV reverse transcriptase. The most compelling correlations have been observed in clinical studies involving young children and adolescents.(More)
BACKGROUND AND OBJECTIVES Imatinib mesylate (IM) is the choice treatment for Bcr/Abl-positive malignancies. Emergence of resistance to IM warrants the exploration of novel well-tolerated anticancer agents. We intended to evaluate the effect of PS-341 on proliferation, survival, and cellular events in Bcr/Abl-positive cells sensitive and resistant to IM, and(More)
The uncoupling of osteoblastic and osteoclastic activity is central to disorders such as osteoporosis, osteolytic malignancies, and periodontitis. Numerous studies have shown explicit functions for bone morphogenetic proteins (BMPs) in skeletogenesis. Their signaling activity has been shown in various contexts to be regulated by extracellular proteins,(More)
Previous studies found that bone morphogenic proteins (BMPs) support osteoclast formation, but it is not clear whether this is a direct effect on osteoclasts or mediated indirectly through osteoblasts. We have shown that a mouse deficient for the BMP antagonist Twisted gastrulation suggested a direct positive role for BMPs on osteoclastogenesis. In this(More)
Histone deacetylases (HDACs) are negative regulators of transcription. Endochondral bone formation including chondrocyte and osteoblast maturation is regulated by HDACs. Very little is known about the role HDACs play in osteoclast differentiation. It has been previously reported that HDAC inhibitors, trichostatin A and sodium butyrate, suppress osteoclast(More)
There is strong clinical evidence that implicates tenofovir in the loss of bone mineral density during treatment of human immunodeficiency virus infection. In this study, we sought to test the hypothesis that tenofovir treatment of osteoblasts causes changes in the gene expression profile that would impact osteoblast function during bone formation. Primary(More)
Green sulfur bacteria possess two light-harvesting antenna systems, the chlorosome and the Fenna-Matthews-Olson (FMO) protein. In addition to self-aggregated bacteriochlorophyll (BChl) c, chlorosomes of Chlorobium tepidum contain a small amount of BChl a (ratio 100:1). The chlorosomal BChl a is associated with CsmA, a 6.2 kDa protein that accounts for more(More)
To investigate the role of bone morphogenetic protein (BMP) signaling in osteoclastogenesis in vivo, we eliminated BMPRII in osteoclasts by creating a BMPRII(fl/fl);lysM-Cre mouse strain. Conditional knock-out (cKO) mice are osteopetrotic when compared with WT controls due to a decrease in osteoclast activity. Bone marrow macrophages (BMMs) isolated from(More)
Bone morphogenetic proteins (BMPs) have been shown to regulate both osteoblasts and osteoclasts. We previously reported that BMP2 could directly enhance RANKL-mediated osteoclast differentiation by increasing the size and number of osteoclasts. Similarly, genetic deletion of the BMP antagonist Twisted gastrulation (TWSG1) in mice, resulted in an enhancement(More)