Lakshmi Tripathi

Learn More
BACKGROUND Block polyhydroxyalkanoates (PHA) were reported to be resistant against polymer aging that negatively affects polymer properties. Recently, more and more attempts have been directed to make PHA block copolymers. Diblock copolymers PHB-b-PHHx consisting of poly-3-hydroxybutyrate (PHB) block covalently bonded with poly-3-hydroxyhexanoate (PHHx)(More)
The β-oxidation weakened Pseudomonas putida were established as a platform for the production of polyhydroxyalkanoates (PHA) with adjustable monomer compositions and micro-structures. When mutant P. putida KTOYO6ΔC (phaPCJA.c) was cultivated on mixtures of sodium butyrate and sodium hexanoate (C4:C6), random copolymers of P(3HB-co-3HHx) consisting of(More)
Poly(4-hydroxybutyrate) (P4HB) is a highly elastic polymer, whereas poly(3-hydroxypropionate) (P3HP) is a polymer with enormous tensile strength. This study aimed to biosynthesize a block copolymer consisting of soft P4HB block with a strong P3HP block to gain unique and excellent material properties. A recombinant Escherichia coli strain that produces(More)
Sigma (σ) factors are the predominant constituents of transcription regulation in bacteria. σ Factors recruit the core RNA polymerase to recognize promoters with specific DNA sequences. Recently, engineering of transcriptional regulators has become a significant tool for strain engineering. The present review summarizes the recent advances in σ factor based(More)
  • 1