Learn More
To better characterize lentiviral vector supernatants, we compared three methods of titer assessment. These titer methods include assessment of vector RNA sequences in supernatants, DNA sequences in transduced cells, and vector expression in transduced cells (using a vector which expressed the green fluorescence protein, GFP). For analysis of RNA and DNA,(More)
To improve the purity of lentiviral vector supernatants for clinical studies we have evaluated plasmid DNA removal from lentiviral vectors and also the extent of plasmid DNA associated with transduced CD34 cells in an ex vivo transduction protocol. Optimal conditions of plasmid DNA removal by benzonase treatment were established by varying the temperature,(More)
Photoaffinity labeling with bovine rhodopsin using a retinal with a fixed 11-cis-ene cross-linked exclusively to Trp-265/Leu-266 in helix F, showing that the beta-ionone C-3 is close to helix F. Moreover, since these labeled amino acids are in the middle of helix F, while the Schiff-base linkage to Lys-296 at the other terminus of the chromophore is also in(More)
A principal concern regarding the safety of HIV-1-based vectors is replication-competent lentivirus (RCL). We have developed two PCR assays for detecting RCL; the first detects recombination between gag regions in the transfer vector and the packaging construct (sensitivity of detection approximately 10-100 copies of target sequence). The second assay uses(More)
The product-enhanced reverse transcriptase (PERT) assay has been used to detect reverse transcriptase (RT) activity associated with retroviruses. Although the PERT assay has been proposed as a method for detection of replication-competent retrovirus (RCR) and lentivirus (RCL), it has not been rigorously compared with existing methods for RCR and RCL(More)
Retroviral vectors based on murine leukemia viruses (MuLV) have been used in clinical investigations for over a decade. Alternative retroviruses, most notably vectors based on HIV-1 and other lentiviruses, are now entering into clinical trials. Although vectors are designed to be replication defective, recombination events during vector production could(More)
Lentiviral vectors derived from the human immunodeficiency virus-1 (HIV-1) have a higher propensity to transduce nondividing cells compared to vectors based on oncoretroviruses. We report here that genistein, a previously known protein tyrosine kinase (PTK) inhibitor and G2 cell cycle arrest inducer, significantly enhanced lentiviral transduction in a(More)