Lakenya Williams

Learn More
Cobyrinic acid a,c-diamide synthetase from Salmonella typhimurium (CbiA) is the first glutamine amidotransferase in the anaerobic biosynthetic pathway of vitamin B(12) and catalyzes the ATP-dependent synthesis of cobyrinic acid a,c-diamide from cobyrinic acid using either glutamine or ammonia as the nitrogen source. The cbiA gene was cloned, the(More)
Cobyric acid synthetase (CbiP) from Salmonella typhimurium catalyzes the glutamine and ATP-dependent amidation of carboxylates b, d, e, and g within adenosyl cobyrinic acid a,c-diamide. After each round of catalysis the partially amidated intermediates are released into solution and the four carboxylates are amidated in the sequential order of e, d, b, and(More)
Pantothenate synthetase from Mycobacterium tuberculosis catalyzes the formation of pantothenate from ATP, D-pantoate, and beta-alanine. The formation of a kinetically competent pantoyl-adenylate intermediate was established by the observation of a positional isotope exchange (PIX) reaction within (18)O-labeled ATP in the presence of d-pantoate. When(More)
Vitamin B12 is utilized as an essential cofactor in a wide range of enzyme-catalyzed reactions. Most of the enzymes involved in the biosynthesis of this complex macromolecule have now been identified and biochemically characterized.1 Cobyric acid synthetase (CbiP) from Salmonella typhimurium catalyzes the ATP-dependent amidation of adenosyl-cobyrinic acid(More)
Uronate isomerase, a member of the amidohydrolase superfamily, catalyzes the isomerization of D-glucuronate and D-fructuronate. During the interconversion of substrate and product the hydrogen at C2 of D-glucuronate is transferred to the pro-R position at C1 of the product, D-fructuronate. The exchange of the transferred hydrogen with solvent deuterium(More)
MshC catalyzes the ATP-dependent condensation of GlcN-Ins and cysteine to form Cys-GlcN-Ins, which is an intermediate in the biosynthetic pathway of mycothiol, i.e., 1-D-myo-inosityl-2-(N-acetyl-L-cysteinyl)amido-2-deoxy-alpha-D-glucopyranoside (MSH or AcCys-GlcN-Ins). MSH is produced by Mycobacterium tuberculosis, members of the Actinomycetes family, to(More)
Uronate isomerase (URI) catalyzes the reversible isomerization of D-glucuronate to D-fructuronate and of D-galacturonate to D-tagaturonate. URI is a member of the amidohydrolase superfamily (AHS), a highly divergent group of enzymes that catalyze primarily hydrolytic reactions. The chemical mechanism and active site structure of URI were investigated in an(More)
  • 1