Laetitia Pelloquin

Learn More
Optic atrophy type 1 (OPA1, MIM 165500) is a dominantly inherited optic neuropathy occurring in 1 in 50,000 individuals that features progressive loss in visual acuity leading, in many cases, to legal blindness. Phenotypic variations and loss of retinal ganglion cells, as found in Leber hereditary optic neuropathy (LHON), have suggested possible(More)
Mutations in the OPA1 gene are associated with autosomal dominant optic atrophy. OPA1 encodes a dynamin-related protein orthologous to Msp1 of Schizosaccharomyces pombe and Mgm1p of Saccharomyces cerevisiae, both involved in mitochondrial morphology and genome maintenance. We present immuno-fluorescence and biochemical evidences showing that OPA1 resides in(More)
Meiosis is the developmental program by which sexually reproducing diploid organisms generate haploid gametes. In yeast, meiosis is followed by spore morphogenesis. These two events are normally coordinated in such a way that spore formation is dependent upon completion of the meiotic nuclear divisions. Here we describe a meiosis-specific protein, mfr1,(More)
Members of the dynamin-related proteins family have been identified in a wide range of organisms, however their precise functions remain elusive. We have identified a new member of that GTPase family in the fission yeast Schizosaccharomyces pombe. We show that Msp1+ is an essential nuclear gene encoding a 101 kDa protein whose closest homologue is the S.(More)
We recently identified Msp1p, a fission yeast Schizosaccharomyces pombe dynamin-related protein, which is essential for the maintenance of mitochondrial DNA. The Msp1p sequence displays typical features of a mitochondrial protein. Here we report in vitro and in vivo data that validate that prediction. We demonstrate that the targeting sequence of Msp1p is(More)
The fission yeast cdr1/nim1 protein kinase phosphorylates and inactivates the weel cdc2-inhibitory kinase. We have investigated the role played by cdr1/nim1 in the connection between nutritional signals and the cell cycle machinery. We show that loss of nim1 activity impairs the appropriate cellular adaptation to nutritional changes. However, the reduction(More)
The nim1/cdr1 protein kinase is required for an efficient adaptation of cell cycle parameters to changes in nutritional conditions. We have isolated msp1, a new fission yeast member of the dynamin-related large GTPase family, in a two-hybrid screen designed to identify proteins interacting with the nim1 kinase. Msp1 has been shown to be essential for the(More)
Close connections appear to exist between extra-cellular signals that regulate cell proliferation and the protein kinases that control the cell cycle machinery. The fission yeast nim1 kinase is an inducer of cdc2 kinase activity acting through the inhibition of wee1 kinase. Nim1 function is required for a correct cellular response to nutritional starvation.(More)
  • 1