Learn More
Humans have evolved with oral exposure to dietary microparticles and nanoparticles as a normal occurrence but the ever-growing exploitation of nanotechnology is likely to increase exposure further, both qualitatively and quantitatively. Moreover, unlike the situation with respirable particles, relatively little is known about gastrointestinal intake and(More)
We have studied the relationship between metal ion levels and lymphocyte counts in patients with metal-on-metal hip resurfacings. Peripheral blood samples were analysed for lymphocyte subtypes and whole blood cobalt and chromium ion levels in 68 patients (34 with metal-on-metal hip resurfacings and 34 with standard metal-on-polyethylene total hip(More)
Dietary microparticles are non-biological bacterial-sized particles of the gastrointestinal lumen that occur due to endogenous formation (calcium phosphate) or following oral exposure (exogenous microparticle). In the UK, about 40 mg (10(12)) of exogenous microparticles are ingested per person per day, through exposure to food additives,(More)
In humans and other mammals it is known that calcium and phosphate ions are secreted from the distal small intestine into the lumen. However, why this secretion occurs is unclear. Here, we show that the process leads to the formation of amorphous magnesium-substituted calcium phosphate nanoparticles that trap soluble macromolecules, such as bacterial(More)
Dietary calcium (Ca) positively modulates the susceptibility to colon cancer, but its effects on related or earlier colonic pathologies, such as inflammation and mucosal dysregulation, are poorly understood. We tested the effects of differing dietary Ca levels on acute dextran sulfate sodium (DSS)-induced colitis in mice. BALB/c mice received a normal Ca(More)
Peptidoglycan (PGN) is a ubiquitous bacterial membrane product that, despite its well known pro-inflammatory properties, has also been invoked in immuno-tolerance of the gastrointestinal tract. PGN-induced mucosal IL-10 secretion and downregulation of Toll like receptors are potential mechanisms of action in the gut but there are few data on tolerogenic(More)
AIM To determine whether in vitro experimental conditions dictate cellular activation of the inflammasome by apatitic calcium phosphate nanoparticles. MATERIAL & METHODS The responses of blood-derived primary human cells to in situ-formed apatite were investigated under different experimental conditions to assess the effect of aseptic culture, cell rest(More)
OBJECTIVES Pigmented cells, that contain inert, submicron-sized dietary particles, are a consistent feature of the base of human Peyer's patches (PP). We aimed (i) to phenotype these intestinal pigment cells (PC) in archival tissue specimens and (ii) to establish whether PC phenotype is altered in inflammatory conditions, especially Crohn's disease (CD). (More)
Exposure to persistent engineered nano and micro particles via the oral route is well established. Animal studies have demonstrated that, once ingested, a small proportion of such particles translocate from the gastrointestinal tract to other tissues. Exposure to titanium dioxide is widespread via the oral route, but only one study has provided indirect(More)
Amorphous magnesium-substituted calcium phosphate (AMCP) nanoparticles (75-150nm) form constitutively in large numbers in the mammalian gut. Collective evidence indicates that they trap and deliver luminal macromolecules to mucosal antigen presenting cells (APCs) and facilitate gut immune homeostasis. Here, we report on a synthetic mimetic of the endogenous(More)