Learn More
A holy grail of conservation is to find simple but reliable measures of environmental change to guide management. For example, particular species or particular habitat attributes are often used as proxies for the abundance or diversity of a subset of other taxa. However, the efficacy of such kinds of species-based surrogates and habitat-based surrogates is(More)
Large trees with cavities provide critical ecological functions in forests worldwide, including vital nesting and denning resources for many species. However, many ecosystems are experiencing increasingly rapid loss of large trees or a failure to recruit new large trees or both. We quantify this problem in a globally iconic ecosystem in southeastern(More)
Environmental disturbance is predicted to play a key role in the evolution of animal social behaviour. This is because disturbance affects key factors underlying social systems, such as demography, resource availability and genetic structure. However, because natural disturbances are unpredictable there is little information on their effects on social(More)
BACKGROUND Big environmental disturbances have big ecological effects, yet these are not always what we might expect. Understanding the proximate effects of major disturbances, such as severe wildfires, on individuals, populations and habitats will be essential for understanding how predicted future increases in the frequency of such disturbances will(More)
Ecogeographical rules help explain spatial and temporal patterns in intraspecific body size. However, many of these rules, when applied to ectothermic organisms such as reptiles, are controversial and require further investigation. To explore factors that influence body size in reptiles, we performed a heuristic study to examine body size variation in an(More)
Carbon stock change due to forest management and disturbance must be accounted for in UNFCCC national inventory reports and for signatories to the Kyoto Protocol. Impacts of disturbance on greenhouse gas (GHG) inventories are important for many countries with large forest estates prone to wildfires. Our objective was to measure changes in carbon stocks due(More)
Species in many ecosystems are facing declines of key resources. If we are to understand and predict the effects of resource loss on natural populations, we need to understand whether and how the way animals use resources changes under resource decline. We investigated how the abundance of arboreal marsupials varies in response to a critical resource,(More)
Climate change is causing fire regime shifts in ecosystems worldwide. Plant species with regeneration strategies strongly linked to a fire regime, such as obligate seeders, may be particularly threatened by these changes. It is unclear whether changes in fire regimes or the direct effects of climate change will be the dominant threats to obligate seeders in(More)
  • 1