Learn More
The aim of this study was to develop a new method for the determination of lift on spinning baseballs. Inertial trajectories of (a) ball surface markers during the first metre of flight and (b) the centre of mass trajectory near home-plate were measured in a pitch using high-speed video. A theoretical model was developed, incorporating aerodynamic(More)
Pitched-baseball trajectories were measured in three dimensions during competitions at the 1996 Summer Olympic games using two high-speed video cameras and standard DLT techniques. A dynamic model of baseball flight including aerodynamic drag and Magnus lift forces was used to simulate trajectories. This simulation together with the measured trajectory(More)
We have developed a system to measure initial conditions in the javelin throw rapidly enough to be used by the thrower for feedback in performance improvement. The system consists of three subsystems whose main tasks are: (A) acquisition of automatically digitized high speed (200 Hz) video x, y position data for the first 0.1-0.2 s of the javelin flight(More)
Analysis of the aerodynamic forces acting on baseball pitches from major league games reveals a large variance in the measured coefficients of lift and drag. We have examined possible explanations for this effect and found that, while uncertainties introduced by measurement error and the method of reporting major league pitch trajectories do explain some of(More)
  • 1