Author pages are created from data sourced from our academic publisher partnerships and public sources.
- Publications
- Influence
Share This Author
STATISTICAL PROPERTIES OF DYNAMICAL SYSTEMS WITH SOME HYPERBOLICITY
- L. Young
- Mathematics
- 1 May 1998
This paper is about the ergodic theory of attractors and conservative dynamical systems with hyperbolic properties on large parts (though not necessarily all) of their phase spaces. The main results…
Recurrence times and rates of mixing
- L. Young
- Mathematics, Economics
- 1 November 1999
The setting of this paper consists of a map making “nice” returns to a reference set. Criteria for the existence of equilibria, speed of convergence to equilibria and for the central limit theorem…
The metric entropy of diffeomorphisms
- F. Ledrappier, L. Young
- Mathematics
- 1 October 1984
Soit M une variete de Riemann compacte C ∞ sans bord, soit f un diffeomorphisme C 2 de M, et soit m une mesure de probabilite de Borel f-invariante sur M. Soit h m (f) l'entropie de f. On donne des…
Dimension, entropy and Lyapunov exponents
- L. Young
- MathematicsErgodic Theory and Dynamical Systems
- 1 March 1982
Abstract We consider diffeomorphisms of surfaces leaving invariant an ergodic Borel probability measure μ. Define HD (μ) to be the infimum of Hausdorff dimension of sets having full μ-measure. We…
Periodic points and topological entropy of one dimensional maps
- Louis Block, J. Guckenheimer, M. Misiurewicz, L. Young
- Mathematics
- 1980
The metric entropy of diffeomorphisms Part II: Relations between entropy, exponents and dimension
- F. Ledrappier, L. Young
- Mathematics
- 1 November 1985
On considere f: (M,m)→(M,m) un C 2 -diffeomorphisme f d'une variete de Riemann compacte M preservant une mesure de probabilite de Borel m. Soit hm(f) l'entropie metrique de f et λ 1 (x)>...>λ r(x)…
On the spectra of randomly perturbed expanding maps
We consider small random perturbations of expanding and piecewise expanding maps and prove the robustness of their invariant densities and rates of mixing. We do this by proving the robustness of the…
The metric entropy of diffeomorphisms Part I: Characterization of measures satisfying Pesin's entropy formula
- F. Ledrappier, L. Young
- Mathematics
- 1 November 1985
Soit M une variete de Riemann compacte, soit f:M→M un diffeomorphisme, et soit m une mesure de probabilite de Borel f-invariante sur M. On identifie les mesures pour lesquelles l'inegalite de…
Ergodic Theory of Differentiable Dynamical Systems
- L. Young
- Mathematics
- 1995
These notes are about the dynamics of systems with hyperbolic properties. The setting for the first half consists of a pair (f, µ), where f is a diffeomorphism of a Riemannian manifold and µ is an…
Escape rates and conditionally invariant measures
- Mark F. Demers, L. Young
- Mathematics
- 1 February 2006
We consider dynamical systems on domains that are not invariant under the dynamics—for example, a system with a hole in the phase space—and raise issues regarding the meaning of escape rates and…
...
...