# Brownian frogs with removal: pandemics in a diffusing population

@article{Grimmett2020BrownianFW, title={Brownian frogs with removal: pandemics in a diffusing population}, author={G. Grimmett and Zhongyang Li}, journal={arXiv: Probability}, year={2020} }

A stochastic model of susceptible/infected/removed (SIR) type, inspired by COVID-19, is introduced for the spread of infection through a spatially-distributed population. Individuals are initially distributed at random in space, and they move continuously according to independent random processes. The disease may pass from an infected individual to an uninfected individual when they are sufficiently close. Infected individuals are permanently removed at some given rate $\alpha$. Two models are… Expand

#### Figures from this paper

#### One Citation

Non-equilibrium multi-scale analysis and coexistence in competing first passage percolation

- Mathematics, Physics
- 2020

The main contribution of this paper is the development of a novel approach to multi-scale analysis that we believe can be used to analyse processes with non-equilibrium dynamics. Our approach will be… Expand

#### References

SHOWING 1-10 OF 35 REFERENCES

The spread of a rumor or infection in a moving population

- Mathematics, Biology
- 2003

The principal result states that if D A = D B (so that the A- and B-particles perform the same random walk), then there exist constants 0 < C i < ∞ such that almost surely C(C 2 t) C B(t) C C (C 1 t) for all large t, where C(r) = [-r, r] d . Expand

A phase transition in a model for the spread of an infection

- Mathematics, Physics
- 2004

We show that a certain model for the spread of an infection has a phase transition in the recuperation rate. The model is as follows: There are particles or individuals of type A and type B,… Expand

On an epidemic model on finite graphs

- Mathematics
- 2016

We study a system of random walks, known as the frog model, starting from a profile of independent Poisson($\lambda$) particles per site, with one additional active particle planted at some vertex… Expand

Asymptotic behavior of a stochastic growth process associated with a system of interacting branching random walks

- Mathematics
- 2002

We study a continuous time growth process on Zd (d⩾1) associated to the following interacting particle system: initially there is only one simple symmetric continuous time random walk of total jump… Expand

Mobile geometric graphs: detection, coverage and percolation

- Mathematics, Computer Science
- SODA '11
- 2011

This work considers the following dynamic Boolean model, and obtains precise asymptotics for detection, coverage and percolation by combining ideas from stochastic geometry, coupling and multi-scale analysis. Expand

Asymptotic behavior of the Brownian frog model

- Mathematics
- 2017

We introduce an extension of the frog model to Euclidean space and prove properties for the spread of active particles. The new geometry introduces a phase transition that does not occur for the frog… Expand

Dynamic Boolean models

- Mathematics, Physics
- 1996

Consider an ordinary Boolean model, that is, a homogeneous Poisson point process in Rd, where the points are all centres of random balls with i.i.d. radii. Now let these points move around according… Expand

Stochastic orders and the frog model

- Mathematics
- 2016

The frog model starts with one active particle at the root of a graph and some number of dormant particles at all nonroot vertices. Active particles follow independent random paths, waking all… Expand

Percolation ?

- 1982

572 NOTICES OF THE AMS VOLUME 53, NUMBER 5 Percolation is a simple probabilistic model which exhibits a phase transition (as we explain below). The simplest version takes place on Z2, which we view… Expand

The Shape Theorem for the Frog Model

- Mathematics
- 2001

We prove a shape theorem for a growing set of simple random walks on Zd, known as the frog model. The dynamics of this process is described as follows: There are active particles, which perform… Expand