Share This Author
Positive solutions of nonlinear elliptic equations involving critical sobolev exponents
- H. Brezis, L. Nirenberg
- Mathematics
- 1 July 1983
Soit Ω un domaine borne dans R n avec n≥3. On etudie l'existence d'une fonction u satisfaisant l'equation elliptique non lineaire -Δu=u P +f(x,u) sur Ω, u>0 sur Ω, u=0 sur ∂Ω, ou p=(n+2)/(n−2),…
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I
- S. Agmon, A. Douglis, L. Nirenberg
- Mathematics
- 1 November 1959
Symmetry and related properties via the maximum principle
- B. Gidas, W. Ni, L. Nirenberg
- Mathematics
- 1 October 1979
We prove symmetry, and some related properties, of positive solutions of second order elliptic equations. Our methods employ various forms of the maximum principle, and a device of moving parallel…
Partial regularity of suitable weak solutions of the navier‐stokes equations
- L. Caffarelli, R. Kohn, L. Nirenberg
- Mathematics
- 1 November 1982
On functions of bounded mean oscillation
- F. John, L. Nirenberg
- Mathematics
- 1 August 1961
First order interpolation inequalities with weights
- L. Caffarelli, R. Kohn, L. Nirenberg
- Mathematics
- 1984
Il existe une constante positive C telle que l'inegalite suivante est vraie pour tout u∈C 0 ∞ (R n ): ||X| G u| L r≤C||x|α|Du|| L p 2 ||x|βu| L q 1−a si et seulement si on a…
On elliptic partial differential equations
- L. Nirenberg
- Mathematics
- 1959
This series of lectures will touch on a number of topics in the theory of elliptic differential equations. In Lecture I we discuss the fundamental solution for equations with constant coefficients.…
Symmetry of positive solutions of nonlinear elliptic equations in R
- B. Gidas, W. Ni, L. Nirenberg
- Mathematics
- 1981
(1993). Radial symmetry of positive solutions of nonlinear elliptic equations in Rn. Communications in Partial Differential Equations: Vol. 18, No. 5-6, pp. 1043-1054.
The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian
- L. Caffarelli, L. Nirenberg, J. Spruck
- Mathematics
- 1 December 1985
On etudie le probleme de Dirichlet dans un domaine borne Ω de R n a frontiere lisse ∂Ω:F(D 2 u)=ψ dans Ω, u=φ sur ∂Ω
...
...