Virtual Knot Theory
- L. Kauffman
- PhilosophyEuropean journal of combinatorics (Print)
- 5 November 1998
This paper is an introduction to the theory of virtual knots. It is dedicated to the memory of Francois Jaeger.
An Introduction to Knot Theory
- L. Kauffman
- Mathematics
- 2001
This paper concentrates on the construction of invariants of knots, such as the Jones polynomials and the Vassiliev invariants, and the relationships of these invariants to other mathematics (such as…
State Models and the Jones Polynomial
- L. Kauffman
- Mathematics
- 1987
An invariant of regular isotopy
- L. Kauffman
- Mathematics
- 1 February 1990
This paper studies a two-variable Laurent polynomial invariant of regular isotopy for classical unoriented knots and links. This invariant is denoted LK for a link K, and it satisfies the axioms: 1.…
Knots And Physics
- L. Kauffman
- Mathematics
- 1991
Physical Knots States and the Bracket Polynomial The Jones Polynominal and Its Generalizations Braids and Polynomials: Formal Feynman Diagrams, Bracket as Vacuum-Vacmum expectation and the Quantum…
A Tutte polynomial for signed graphs
- L. Kauffman
- MathematicsDiscrete Applied Mathematics
- 1 September 1989
New invariants in the theory of knots
- L. Kauffman
- Mathematics
- 1 March 1988
Approche diagrammatique des invariants dans la theorie des nœuds. Relations avec la theorie des graphes, la physique et d'autres sujets. Construction du polynome de Jones et de son algebre associee.…
Braiding operators are universal quantum gates
- L. Kauffman, S. Lomonaco
- Physics
- 15 January 2004
This paper explores the role of unitary braiding operators in quantum computing. We show that a single specific solution R (the Bell basis change matrix) of the Yang–Baxter equation is a universal…
Invariants of graphs in three-space
- L. Kauffman
- Mathematics
- 1 February 1989
Par association d'une collection de nœuds et d'aretes a un graphe dans un espace tridimensionnel, on obtient des invariants calculables du type de plongement du graphe. On considere deux types…
...
...