Learn More
Our drug discovery efforts for N-type calcium channel blockers in the 4-piperidinylaniline series led to the discovery of an orally active analgesic agent 26.1-[4-Dimethylamino-benzyl)-piperidin-4-yl]-[4-(3,3-dimethyl-but yl)-phenyl]-(3-methyl-but-2-enyl)amine (26) showed high affinity to functionally block N-type calcium channels (IC50=0.7 microM in the(More)
In this study aminotransferase inhibitors were used to determine the relative importance of different aminotransferases in providing nitrogen for de novo glutamate synthesis in the retina. Aminooxyacetate, which inhibits all aminotransferases, blocked de novo glutamate synthesis from H(14)CO(3)(-) by more than 60%. Inhibition of neuronal cytosolic branched(More)
Selective N-type Voltage Sensitive Calcium Channel (VSCC) blockers have shown utility in several models of stroke and pain. A series of N,N-dialkyldipeptidylamines with potent functional activity at N-type VSCC's has been identified. Multiple parallel synthesis of a focused array of thirty compounds using polymer-supported quenching reagents and preliminary(More)
Selective N-type Voltage Activated Calcium Channel (VACC) blockers have shown utility in several models of stroke and pain. In the process of searching for small molecules as N-type calcium channel blockers, we have identified a series of N,N-dialkylpeptidylamines (e.g., PD 175069) with potent functional activity at N-type VACC. Further modification of the(More)
Selective N-type voltage sensitive calcium channel (VSCC) blockers have shown efficacy in several animal models of stroke and pain. In the process of searching for small molecule N-type calcium channel blockers, we have identified a series of N-methyl-N-aralkyl-peptidylamines with potent functional activity at N-type VSCCs. The most active compound(More)
In this article, the rationale for the design, synthesis, and biological evaluation of a series of N-type voltage-sensitive calcium channel (VSCC) blockers is described. N-Type VSCC blockers, such as ziconotide, have shown utility in several models of stroke and pain. Modification of the previously reported lead, 1a, led to several(More)
Exploration of the SAR around the leucine side chain in a series of N,N-dialkyldipeptidylamines with potent functional activity at N-type VSCC is presented. A novel analog is disclosed which possesses improved aqueous solubility, in vivo activity in an audiogenic seizure model, and reversible blockade in electrophysiological assays.
Selective N-type voltage sensitive calcium channel (VSCC) blockers have shown utility in several models of stroke and pain. We are especially interested in small molecule N-type calcium channel blockers for therapeutic use. Herein, we report a series of N,N-dialkyl-dipeptidylamines with potent functional activity at N-type VSCCs and in vivo efficacy. The(More)
Several novel N-type voltage sensitive calcium channel blockers showed high affinity in the IMR32 assay and efficacy in the anti-writhing model. Herein, we describe the design, synthesis, SAR studies, biological data, physicochemical properties and pharmacokinetics of this 4-piperidinylaniline series.