Learn More
P. Batude, M. Vinet, B. Previtali, C. Tabone, C. Xu, J. Mazurier, O. Weber, F. Andrieu, L. Tosti, L.Brevard, B. Sklenard, P. Coudrain, S. Bobba, H. Ben Jamaa, P-E. Gaillardon, A. Pouydebasque, O. Thomas, C. Le Royer, J.-M. Hartmann, L. Sanchez, L. Baud, V. Carron, L. Clavelier, G. De Micheli, S. Deleonibus, O. Faynot and T. Poiroux. CEAleti, Minatec Campus,(More)
Thin film devices (FDSOI) are among the most promising candidates for next device generations due to their better immunity to short channel effects (SCE). In addition, the introduction of high-k and metal gate has greatly improved the MOSFETs performance by reducing the electrical oxide thickness (CET) and gate leakage current. However, if midgap metal gate(More)
We report in this paper the fabrirication and the characterirization of FDSOI pMOSFETs with metallic source and drain exhibiting the best performance obtained so far on metallic source/drain devices, with Ion=345µA/µm and Ioff=30nA/µm at −1V for a 50nm gate length device. These results have been achieved thanks to a careful(More)
This paper describes low-field electron transport in nanowire FETs with high-κ/metal gate fabricated on 300 mm SOI and strained-SOI substrates. We studied the temperature and size dependences of gatechannel capacitance (CGC) and effective mobility (μEFF) down to 8 nm width. We show that the electron mobility is strongly reduced for sub-10 nm widths.(More)
We demonstrate that Fully Depleted Silicon-On-Insulator (FDSOI) technology is a simple and mature alternative to the bulk one for the 22nm technology node and beyond. In particular, this technology allows significant improvement of the transistors electrostatic control and variability. Furthermore, the integration of such FDSOI transistors on an ultra-thin(More)
  • 1