Learn More
The effects of a histidine (His) residue located on the C-terminal side of an asparaginyl (Asn) residue on the rate of deamidation were studied using Gly-Gln-Asn-X-His pentapeptides. The rates of deamidation of the pentapeptides were determined at 37 degrees C (I = 0.5) as function of pH, buffer species, and buffer concentration. A capillary electrophoresis(More)
The reversible hopping of a bistable atom on the Si(100)-(2×1):H surface is activated nonlocally by hole injection into Si-Si bond surface states with a low temperature (5 K) scanning tunneling microscope. In the contact region, at short distances (<1.5  nm) between the hole injection site and the bistable atom, the hopping yield of the bistable atom(More)
At low temperature (5 K), a single biphenyl molecule adsorbed on a Si(100) surface behaves as a bistable device which can be reversibly switched by electronic excitation with the scanning tunneling microscope tip. Density functional theory suggests that the biphenyl molecule is adsorbed with one dissociated hydrogen atom bonded to a neighbor surface silicon(More)
Scanning Tunneling Microscopy (STM), Scanning Tunneling Spectroscopy (STS), and manipulation studies were performed on an ordered self-assembled monolayer (SAM) of N,N'-bis(1-hexylheptyl)perylene-3,4:9,10-bis(dicarboximide) molecules on epitaxial graphene on hexagonal silicon carbide - SiC(0001). Four novel aspects of the molecular SAM on graphene are(More)
Controlling the intrinsic optical and electronic properties of a single molecule adsorbed on a surface requires electronic decoupling of some molecular orbitals from the surface states. Scanning tunneling microscopy experiments and density functional theory calculations are used to study a perylene molecule derivative (DHH-PTCDI), adsorbed on the clean 3 ×(More)
We report a description of the SiC(0001) 3 x 3 silicon carbide reconstruction based on single-molecule scanning tunneling microscopy (STM) observations and density functional theory calculations. We show that the SiC(0001) 3 x 3 reconstruction can be described as contiguous domains of right and left chirality distributed at the nanoscale, which breaks the(More)
We present the results of a variational calculation of the ground state energy of a ( D+,X ) complex in a quantum well with finite potential barriers as a function of the depth and the width of the well as well as the ratio o of the electron and hole effective masses. We use the envelope function approximation. We apply our results to the system(More)