Learn More
High-permittivity dielectric particles with resonant magnetic properties are being explored as constitutive elements of new metamaterials and devices. Magnetic properties of low-loss dielectric nanoparticles in the visible or infrared are not expected due to intrinsic low refractive index of optical media in these regimes. Here we analyze the dipolar(More)
Photonic crystals have proven their potential and are nowadays a familiar concept. They have been approached from many scientific and technological flanks. Among the many techniques devised to implement this technology self-assembly has always been one of great popularity surely due to its ease of access and the richness of results offered. Self-assembly is(More)
Magnetodielectric small spheres present unusual electromagnetic scattering features, theoretically predicted a few decades ago. However, achieving such behaviour has remained elusive, due to the non-magnetic character of natural optical materials or the difficulty in obtaining low-loss highly permeable magnetic materials in the gigahertz regime. Here we(More)
Radiative corrections to the polarizability tensor of isotropic particles are fundamental to understand the energy balance between absorption and scattering processes. Equivalent radiative corrections for anisotropic particles are not well known. Assuming that the polarization within the particle is uniform, we derived a closed-form expression for the(More)
We study the statistical properties of wave scattering in a disordered waveguide. The statistical properties of a "building block" of length deltaL are derived from a potential model and used to find the evolution with length of the expectation value of physical quantities. In the potential model the scattering units consist of thin potential slices,(More)
We show that the interaction between a plasmonic and a magnetoplasmonic metallic nanodisk leads to the appearance of magneto-optical activity in the purely plasmonic disk induced by the magnetoplasmonic one. Moreover, at specific wavelengths the interaction cancels the net electromagnetic field at the magnetoplasmonic component, strongly reducing the(More)
Metallic nanowires (NW) coated with a high permittivity dielectric are proposed as means to strongly reduce the light scattering of the conducting NW, rendering them transparent at infrared wavelengths of interest in telecommunications. Based on a simple, universal law derived from electrostatics arguments, we find appropriate parameters to reduce the(More)
A detailed analysis of the distribution of conductances P(g) of quasi-one-dimensional disordered wires in the metal-insulator crossover is presented. P(g) obtained from a Monte Carlo solution of the Dorokhov, Mello, Pereyra, and Kumar (DMPK) scaling equation is in full agreement with "tight-binding" numerical calculations of bulk disordered wires.(More)
Luis S. Froufe-Pérez, Michael Engel, 3 Pablo F. Damasceno, 3 Nicolas Muller, Jakub Haberko, Sharon C. Glotzer, 3, 5 and Frank Scheffold Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA Biointerfaces Institute, University of Michigan, Ann(More)