Learn More
This paper reviews the advances that flash lamp annealing brings to the processing of the most frequently used semiconductor materials, namely silicon and silicon carbide, thus enabling the fabrication of novel microelectronic structures and materials. The paper describes how such developments can translate into important practical applications leading to a(More)
We investigated the immobilization of the estrogen receptor hER(α) on silanized SiO(2) surfaces for biosensor applications. The conjugation of the estrogen receptor hER(α) to the quantum dot dye QD655 was achieved. In order to obtain an optimal immobilization of the estrogen receptor hER(α) on the functionalized SiO(2) surface, the bioconjugate hER(α)-QD655(More)
A key milestone for the next generation of high-performance multifunctional microelectronic devices is the monolithic integration of high-mobility materials with Si technology. The use of Ge instead of Si as a basic material in nanoelectronics would need homogeneous p- and n-type doping with high carrier densities. Here we use ion implantation followed by(More)
Sub-second annealing is one of the key issues to meet the requirements of the 45 nm technology node according to the ITRS roadmap. Therefore, over the past decade there has been great interest in techniques such as laser and flash lamp annealing (FLA). In addition, advanced ultra-fast annealing shows promise for technologies that are not directly related to(More)
The optoelectronic applications of Si are restricted to the visible and near-infrared spectral range due to its 1.12 eV-indirect band gap. Sub-band gap light detection in Si, for instance, has been a long-standing scientific challenge for many decades since most photons with sub-band gap energies pass through Si unabsorbed. This fundamental shortcoming,(More)
A new silanization method for SiO(2) surfaces has been developed for Si-based light emitters which are intended to serve as light sources in smart biosensors relying on fluorescence analysis. This method uses a special silanization chamber and is based on spraying and spin coating (SSC) in nitrogen atmosphere at room temperature for 10 min. It avoids(More)
The photoluminescence (PL) and electroluminescence (EL) properties of Ge-implanted SiO2 films thermally-grown on a Si substrate have been investigated and compared to those of Si-implanted SiO2 films. It is found that the blue-violet PL from both Si and Ge-rich layers reaches a maximum after annealing at 500 C for 30 min. The PL and EL from Ge-implanted(More)
There is a clear and increasing interest in short time annealing processing far below one second, i.e. the lower limit of Rapid Thermal Processing (RTP) called spike annealing. This was driven by the need of suppressing the so-called Transient Enhanced Diffusion in advanced boron-implanted shallow pn-junctions in silicon technology. Meanwhile the interest(More)
Gold surfaces functionalized with nickel-nitrilotriacetic acid (Ni²⁺-NTA) as self-assembled monolayers (SAM) to immobilize histidine (His)-tagged biomolecules are broadly reported in the literature. However, the increasing demand of using microfluidic systems and biosensors takes more and more advantage on silicon technology which provides dedicated glass(More)