Learn More
Coupling between pyramidal tract (PT) neurones and ipsilateral hindlimb motoneurones was investigated by recording from commissural interneurones interposed between them. Near maximal stimulation of either the left or right PT induced short latency EPSPs in more than 80% of 20 commissural interneurones that were monosynaptically excited by reticulospinal(More)
This review deals with a spinal interneuronal system, denoted the C3-C4 propriospinal system, which is unique in the sense that it so far represents the only spinal interneuronal system for which it has been possible to demonstrate a command mediating role for voluntary movements. The C3-C4 propriospinal neurones govern target reaching and can update the(More)
The aim of the study was to analyse the potential contribution of excitatory and inhibitory premotor interneurones in reflex pathways from muscle afferents to actions of pyramidal tract (PT) neurones on ipsilateral hindlimb motoneurones. Disynaptic EPSPs and IPSPs evoked in motoneurones in deeply anaesthetized cats by group Ia, Ib and II muscle afferents(More)
Recovery of voluntary movements after partial spinal cord injury depends, in part, on a take-over of function via unlesioned pathways. Using precise forelimb movements in the cat as model, spinal pathways contributing to motor restitution have been investigated in more detail. The food-taking movement by which the cat graSPS a morsel of food with the digits(More)
We have shown previously that ipsilateral pyramidal tract (PT) neurons facilitate the actions of reticulospinal neurons on feline motoneurons (Edgley et al., 2004), which indicates that they might assist the recovery of motor functions after injuries of contralateral corticospinal neurons. Nevertheless, stimulation of ipsilateral PT fibers alone only rarely(More)
This study uses a previously described paradigm (Pettersson et al., 1997) to investigate the ability of cats to change the direction of ongoing reaching when the target is shifted sideways; the effect on the switching latency of spinal cord lesions was investigated. Large ventral lesions transecting the ventral funicle and the ventral half of the lateral(More)
Cortico- and rubrospinal tracts play an important role in controlling voluntary movements. Transection of these tracts in different spinal cord layers gives different effects that may be explained by the influence of different spinal cord neuronal networks. The aim of the present work was to study the role of C3/C4 propriospinal system in movement control(More)
  • 1