Learn More
Normal processing of the amyloid beta protein precursor (beta APP) results in secretion of a soluble 4-kilodalton protein essentially identical to the amyloid beta protein (A beta) that forms insoluble fibrillar deposits in Alzheimer's disease. Human neuroblastoma (M17) cells transfected with constructs expressing wild-type beta APP or the beta APP717(More)
The microtubule-associated protein tau is hyperphosphorylated in the paired helical filaments (PHFs) of Alzheimer's disease. Immunological and direct chemical studies have identified Ser396 and Ser404 as two of the phosphorylated sites. Previously, we have demonstrated, using synthetic tau peptides containing phosphorylated Ser396, that this site is(More)
Hyperphosphorylated tau (PHF-tau) is the major constituent of paired helical filaments (PHFs) from Alzheimer's disease (AD) brains. This conclusion has been based largely on the creation and characterization of monoclonal antibodies raised against PHFs, which can be classified in three categories: (a) those recognizing unmodified primary sequences of tau,(More)
Alzheimer's disease is the most common cause of progressive intellectual failure. The lesions that develop, called senile plaques, are extracellular deposits principally composed of insoluble aggregates of beta-amyloid protein (A beta), infiltrated by reactive microglia and astrocytes. Although A beta, and a portion of it, the fragment 25-35 (A beta(More)
Putative Alzheimer disease (AD)-specific proteins (A68) were purified to homogeneity and shown to be major subunits of one form of paired helical filaments (PHFs). The amino acid sequence and immunological data indicate that the backbone of A68 is indistinguishable from that of the protein tau (tau), but A68 could be distinguished from normal human tau by(More)
Biochemical and immunocytochemical analyses were performed to evaluate the composition of the amyloid beta protein (A beta) deposited in the brains of patients with Alzheimer's disease (AD). To quantitate all A beta s present, cerebral cortex was homogenized in 70% formic acid, and the supernatant was analyzed by sandwich enzyme-linked immunoabsorbent(More)
To gain insights into the different forms of modified amyloid beta peptides (A beta) in the Alzheimer disease (AD) and Down syndrome (DS) brain, we used two-site ELISAs with antibodies specific for isomerized (i.e. A beta with L-isoaspartate at positions 1 and 7) and pyroglutamate-modified (i.e. A beta beginning with pyroglutamate at position 3) forms of A(More)
Immunological and structural analyses of neurofilament (NF) proteins with greater than 500 anti-NF monoclonal antibodies (mAbs) enumerated epitopes shared by NF proteins and Alzheimer neurofibrillary tangles. We identified the multiphosphorylation domain of the rat heaviest NF subunit--tandem repeats of Lys-Ser-Pro-Xaa (where Xaa is a small uncharged amino(More)
The major constituent of the paired helical filaments (PHFs) of Alzheimer's disease is the abnormally phosphorylated form of the microtubule-associated protein, tau. Monoclonal antibody (mAb) Tau-1 is used extensively to stain normal human tau, and tau isolated from the brains of Alzheimer's disease patients after dephosphorylation. We used a panel of 6(More)