L O Norenberg

Learn More
To evaluate the astrocytic alterations commonly seen in hepatic encephalopathy and other hyperammonemic states, primary astrocyte cultures derived from neonatal rats were exposed to varying concentrations of ammonia for one to ten days. Ammonia-treated cultures initially showed an increase in basophilia, prominent cytoplasmic processes and increased(More)
Previous studies of human hepatic encephalopathy (HE) have shown decreased levels of glial fibrillary acidic protein (GFAP) in Alzheimer type II astrocytes. In view of the important role of ammonia in the pathogenesis of HE, we carried out immunocytochemical and enzyme-linked immunosorbent assay (ELISA) studies on the effect of ammonium chloride (10 mM) on(More)
The effect of ATP and other purines on 45Ca uptake was studied in primary cultures of rat astrocytes. Treatment of the cells with ATP for 1 to 30 min brought about an increase in cellular 45Ca. Stimulation of calcium influx by ATP was investigated using a 90 sec exposure to 45Ca and over a concentration range of 0.1 nM to 3 mM; a biphasic dose-response(More)
We investigated the role of Ca(2+)-dependent protein kinases in the regulation of astrocytic cell volume. Calmodulin (CaM) antagonists were used to inhibit CaM and thus Ca2+/CaM-dependent protein kinase. The effect of these inhibitors as well as activators and inhibitors of protein kinase C (PKC) on astrocytic volume was measured in response to hypoosmotic(More)
Excessive tissue lactic acidosis is considered to be detrimental to the central nervous system (CNS) and may adversely affect recovery from anoxia, ischemia, trauma and epilepsy. Since astrocytes are believed to play a role in pH regulation in the CNS, we studied the effect of this acid on primary astrocyte cultures. Cells exposed to lactic acid showed(More)
Peripheral-type benzodiazepine (BZD) receptors were studied in cultured astrocytes derived from genetically epilepsy-prone and control rats. Scatchard analysis of the binding of [3H]Ro 5-4864 to astrocyte homogenates from epilepsy-prone rats showed 38% fewer BZD receptors (Bmax) as compared to controls. No significant change in affinity (Kd) was observed.(More)
Calcium, calmodulin-dependent protein kinase (Ca/CaM kinase) is an important component of calcium signalling mechanisms in the brain, but little is known about the properties of this protein phosphorylation system in astrocytes. Addition of calcium and calmodulin to supernatant or membrane fractions obtained from rat astrocytes in primary culture increased(More)
Phosphoinositide-linked transmembrane signaling in the brain involves calcium-activated, phospholipid-dependent protein kinase (protein kinase C), but little is known about the glial contribution to this system. We observed that phosphorylation of several proteins in a cytosol fraction of rat astrocytes in primary culture was increased by the addition of(More)
Extracellular adenosine 5'-triphosphate (ATP)-evoked increases in intracellular calcium and the consequent stimulation of calcium-mediated protein phosphorylation systems were investigated in primary cultures of rat cerebral cortical astrocytes. Measurement of calcium responses in fura-2-loaded astrocytes indicated that extracellular ATP stimulated a(More)
The distribution of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) in supernatant and particulate fractions of primary cultures of rat astrocytes and its translocation by a phorbol ester were studied. We observed that 91% of protein kinase C activity in astrocytes was in the supernatant fraction, as measured by lysine-rich(More)