Learn More
The mu opioid receptor gene (MOR) was mutated in mice by a gene targeting procedure. In these MOR-knockout mice, the analgesic effects of morphine, its major metabolites, morphine-6-glucuronide (M-6-G) and morphine-6-ethereal sulfate (M-6-S), and endomorphin-2, as well as morphine-induced lethality, were drastically reduced, whereas the effects of DPDPE and(More)
Receptor-interacting protein 140 (RIP140) encodes a histone deacetylase (HDAC) inhibitor-sensitive repressive activity. Direct interaction of RIP140 with HDAC1 and HDAC3 occurs in vitro and in vivo as demonstrated in co-immunoprecipitation and glutathione S-transferase pull-down experiments. The HDAC-interacting domain of RIP140 is mapped to its N-terminal(More)
Drug addiction has great social and economical implications. In order to resolve this problem, the molecular and cellular basis for drug addiction must be elucidated. For the past three decades, our research has focused on elucidating the molecular mechanisms behind morphine tolerance and dependence. Although there are many working hypotheses, it is our(More)
Mobilization and translation of mRNAs, two important events believed to involve stress granules (SGs), in neurons are important for their survival and activities. However, the formation and disassembly of SGs in neurons remains unclear. By using an arsenite-induced neuronal stress model of rat primary spinal cord neuron cultures, we demonstrate the(More)
The promoter and its upstream regulatory region of the mouse cellular retinoic acid-binding protein I (crabp-I) gene were examined in transgenic mouse embryos, a mouse embryonal carcinoma cell line P19, and a mouse embryonic fibroblast cell line 3T6. In transgenic mouse embryos, a beta-galactosidase reporter gene under the control of crabp-I promoter and(More)
The effect of retinoids on the expression of kappa opioid receptor (KOR) gene was examined in normal and transgenic animals. KOR-lacZ transgene expression was specifically elevated in KOR-positive areas of the developing CNS by depleting vitamin A from animal diets. The endogenous KOR mRNA species, including all three isoforms, were also upregulated by(More)
Three mRNA variants are generated from the mouse kappa-opioid receptor (KOR) gene. The expression patterns of these KOR mRNA variants in adult animal tissues and during developmental stages are examined. Furthermore, the biological significance of generating these variants is demonstrated with respect to two post-transcriptional mechanisms, i.e., mRNA(More)
The mouse homologue of the human receptor-interacting protein 140 (RIP140) was isolated from a mouse embryonic cDNA library in yeast two-hybrid screening experiments by using the ligand binding domain (LBD) of nuclear orphan receptor TR2 as the bait. The receptor-interacting domains of mouse RIP140 were mapped to the regions containing the LXXLL motif(More)
The mouse kappa opioid receptor (KOR) gene is constitutively expressed in mouse embryonal carcinoma P19 stem cells and suppressed by retinoic acid (RA) in cells undergoing neuronal differentiation. A negative regulatory element is located within intron 1 of the KOR gene, which contains an Ikaros (Ik)-binding site (GGGAAgGGGAT). This sequence is an Ik-1(More)
Microglial activation worsens neuronal loss and contributes to progressive neurological diseases like Parkinson’s disease (PD). This inflammatory progression is countered by dynorphin (Dyn), the endogenous ligand of the kappa-opioid receptor (KOR). We show that microglial β-arrestin mediates the ability of Dyn/KOR to limit endotoxin-elicited production of(More)