L N Porokhovnik

Learn More
BACKGROUND Infantile autism and schizophrenia are severe multifactorial disorders with a pronounced genetic predisposition. Their pathogeneses are often associated with oxidative stress in the brain. Previously, we established that a cell's resistance to oxidative stress depended on the copy number of transcriptionally active genes for rRNA (ribosomal(More)
Oxidative DNA damage has been proposed as one of the causes of schizophrenia (SZ), and post mortem data indicate a dysregulation of apoptosis in SZ patients. To evaluate apoptosis in vivo we quantified the concentration of plasma cell-free DNA (cfDNA index, determined using fluorescence), the levels of 8-oxodG in cfDNA (immunoassay) and lymphocytes(More)
The influence of a water-soluble [60] fullerene derivative containing five residues of 3-phenylpropionic acid and a chlorine addend appended to the carbon cage (F-828) on serum-starving human embryo lung diploid fibroblasts (HELFs) was studied. Serum deprivation evokes oxidative stress in HELFs. Cultivation of serum-starving HELFs in the presence of 0.1-1(More)
BACKGROUND Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. PRINCIPAL FINDINGS Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA) and results in both single-(More)
Ribosomal genes (RG), or rRNA genes, in eukaryotic genomes are represented by numerous tandem repeats, of which only a portion are transcriptionally active. The number of active copies is a constant feature of genome genome determining the cell’s ability for the rapid synthesis of proteins needed to overcome the effects of stress. A low number of active RG(More)
  • 1