Learn More
[1] Disturbances are important for renewal of North American forests. Here we summarize more than 180 site years of eddy covariance measurements of carbon dioxide flux made at forest chronosequences in North America. Net ecosystem production (NEP) showed a carbon loss from all ecosystems following a stand‐replacing disturbance, becoming a carbon sink by 20(More)
At the leaf scale, it is a long-held assumption that stomata close at night in the absence of light, causing transpiration to decrease to zero. Energy balance models and evapotranspiration equations often rely on net radiation as an upper bound, and some models reduce evapotranspiration to zero at night when there is no solar radiation. Emerging research is(More)
Soil respiration is controlled by soil temperature, soil water, fine roots, microbial activity, and soil physical and chemical properties. Forest thinning changes soil temperature, soil water content, and root density and activity, and thus changes soil respiration. We measured soil respiration monthly and soil temperature and volumetric soil water(More)
We assessed the differential advantages of deciduousness and evergreenness by examining 26 site-years of carbon dioxide, water vapor, and energy flux measurements from five comparable oak woodlands in France, Italy, Portugal, and California (USA). On average, the evergreen and deciduous oak woodlands assimilated and respired similar amounts of carbon while(More)
Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate–carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO 2 exchange with the atmosphere(More)
Soil respiration (SR) constitutes the largest flux of CO(2) from terrestrial ecosystems to the atmosphere. However, there still exist considerable uncertainties as to its actual magnitude, as well as its spatial and interannual variability. Based on a reanalysis and synthesis of 80 site-years for 57 forests, plantations, savannas, shrublands and grasslands(More)
Finely tuned process-based tree-growth models are of considerable help in understanding the variations of biomass increments measured in the dendrochronological series. Using site and species parameters, as well as daily climate variables, the MAIDEN model computes the water balance at ecosystem level and the daily increment of carbon storage in the stem(More)
Mediterranean trees must adjust their canopy leaf area to the unpredictable timing and severity of summer drought. The impact of increased drought on the canopy dynamics of the evergreen Quercus ilex was studied by measuring shoot growth, leaf production, litterfall, leafing phenology and leaf demography in a mature forest stand submitted to partial(More)
This work aims at understanding future spatial and temporal distributions of tree species in the Mediterranean region of France under various climates. We focused on two different species (Pinus Halepensis and Quercus Ilex) and compared their growth under the IPCC-B2 climate scenario in order to quantify significant changes between 5 present and future. The(More)
Seasonal drought can severely impact leaf photosynthetic capacity. This is particularly important for Mediterranean forests, where precipitation is expected to decrease as a consequence of climate change. Impacts of increased drought on the photosynthetic capacity of the evergreen Quercus ilex were studied for two years in a mature forest submitted to(More)