Learn More
The practical construction of scalable quantum-computer hardware capable of executing nontrivial quantum algorithms will require the juxtaposition of different types of quantum systems. We analyze a modular ion trap quantum-computer architecture with a hierarchy of interactions that can scale to very large numbers of qubits. Local entangling quantum gates(More)
Quantum computation and communication exploit the quantum properties of superposition and entanglement in order to perform tasks that may be impossible using classical means. In this Colloquium recent experimental and theoretical progress in the generation of entangled quantum networks based on the use of optical photons as carriers of information between(More)
Entangled quantum states, at the heart of quantuminformation processing, are notoriously difficult to generate and control. Generating entangled states becomes dramatically simpler when the entanglement operations are allowed to succeed with only a finite perhaps small probability, as long as it is known when the operations succeed 1–5 . If entangling gates(More)
We perform a quantum simulation of the Ising model with a transverse field using a collection of three trapped atomic ion spins. By adiabatically manipulating the Hamiltonian, we directly probe the ground state for a wide range of fields and form of the Ising couplings, leading to a phase diagram of magnetic order in this microscopic system. The technique(More)
PACS 03.67.Lx – Quantum computation architectures and implementations PACS 32.80.Qk – Coherent control of atomic interactions with photons PACS 03.67.Pp – Quantum error correction and other methods for protection against decoherence Abstract – We propose a large-scale quantum computer architecture by more easily stabilizing a single large linear ion chain(More)
We propose a method to implement cavity QED and quantum-information processing in high-Q cavities with a single trapped but nonlocalized atom. The system is beyond the Lamb-Dicke limit due to the atomic thermal motion. Our method is based on adiabatic passages, which make the relevant dynamics insensitive to the randomness of the atom position with an(More)
The router is a key element for a network. We describe a scheme to realize genuine quantum routing of single-photon pulses based on cascading of conditional quantum gates in a Mach-Zehnder interferometer and report a proof-of-principle experiment for its demonstration using linear optics quantum gates. The polarization of the control photon routes in a(More)