Learn More
Numerous studies of the underlying causes of ageing have been attempted by examining diseases associated with premature ageing, such as Werner's syndrome and Hutchinson-Gilford progeria syndrome (HGPS). HGPS is a rare genetic disorder resulting in phenotypes suggestive of accelerated ageing, including shortened stature, craniofacial disproportion, very thin(More)
Emery-Dreifuss muscular dystrophy (EDMD1) is caused by mutations in either the X-linked gene emerin (EMD) or the autosomal lamin A/C (LMNA) gene. Here, we describe the derivation of mice lacking emerin in an attempt to derive a mouse model for EDMD1. Although mice lacking emerin show no overt pathology, muscle regeneration in these mice revealed defects. A(More)
Laminopathies encompass a wide array of human diseases associated to scattered mutations along LMNA, a single gene encoding A-type lamins. How such genetic alterations translate to cellular defects and generate such diverse disease phenotypes remains enigmatic. Recent work has identified nuclear envelope proteins--emerin and the linker of the nucleoskeleton(More)
The high mortality rate from ovarian cancers can be attributed to late-stage diagnosis and lack of effective treatment. Despite enormous effort to develop better targeted therapies, platinum-based chemotherapy still remains the standard of care for ovarian cancer patients, and resistance occurs at a high rate. One of the rate limiting factors for(More)
Recent findings that some 24 inherited diseases and anomalies are caused by defects in proteins of the NE (nuclear envelope) and lamina have resulted in a fundamental reassessment of the functions of the NE and underlying lamina. Instead of just regarding the NE and lamina as a molecular filtering device, regulating the transfer of macromolecules between(More)
Antitumor bisimidazoacridones are bifunctional DNA binders which have recently been shown to selectively target human colon carcinoma cells in vitro and in vivo and appear to be excellent candidates for clinical development. We have studied the mechanism of action of one bisimidazoacridone, WMC26, which is 1,000-10,000 times more toxic to human colon(More)
Serous epithelial ovarian cancer (SEOC) is the most lethal gynecological cancer in the United States with disease recurrence being the major cause of morbidity and mortality. Despite recent advances in our understanding of the molecular mechanisms responsible for the development of SEOC, the survival rate for women with this disease has remained relatively(More)
Evidence suggests that small subpopulations of tumor cells maintain a unique self-renewing and differentiation capacity and may be responsible for tumor initiation and/or relapse. Clarifying the mechanisms by which these tumor-initiating cells (TICs) support tumor formation and progression could lead to the development of clinically favorable therapies.(More)
shRNA-mediated lethality screening is a useful tool to identify essential targets in cancer biology. Ovarian cancer (OC) is extremely heterogeneous and most cases are advanced stages at diagnosis. OC has a high response rate initially, but becomes resistant to standard chemotherapy. We previously employed high throughput global shRNA sensitization screens(More)
The small molecule NSC676914A was previously identified as an NF-κB inhibitor in TPA-stimulated HEK293 cells (Mol Can Ther 8:571-581, 2009). We hypothesized that this effect would also be seen in ovarian cancer cells, and serve as its mechanism of cytotoxicity. OVCAR3 and HEK293 cell lines stably containing a NF-κB luciferase reporter gene were generated.(More)