Learn More
Naive T helper cells differentiate into two subsets, Th1 and Th2, each with distinct functions and cytokine profiles. Here, we report the isolation of T-bet, a Th1-specific T box transcription factor that controls the expression of the hallmark Th1 cytokine, IFNgamma. T-bet expression correlates with IFNgamma expression in Th1 and NK cells. Ectopic(More)
Considerable progress has been made in identifying the transcription factors involved in the early specification of the B-lymphocyte lineage. However, little is known about factors that control the transition of mature activated B cells to antibody-secreting plasma cells. Here we report that the transcription factor XBP-1 is required for the generation of(More)
Obesity contributes to the development of type 2 diabetes, but the underlying mechanisms are poorly understood. Using cell culture and mouse models, we show that obesity causes endoplasmic reticulum (ER) stress. This stress in turn leads to suppression of insulin receptor signaling through hyperactivation of c-Jun N-terminal kinase (JNK) and subsequent(More)
Inflammatory bowel disease (IBD) has been attributed to aberrant mucosal immunity to the intestinal microbiota. The transcription factor XBP1, a key component of the endoplasmic reticulum (ER) stress response, is required for development and maintenance of secretory cells and linked to JNK activation. We hypothesized that a stressful environmental milieu in(More)
T-bet is a member of the T-box family of transcription factors that appears to regulate lineage commitment in CD4 T helper (TH) lymphocytes in part by activating the hallmark TH1 cytokine, interferon-gamma (IFN-gamma). IFN-gamma is also produced by natural killer (NK) cells and most prominently by CD8 cytotoxic T cells, and is vital for the control of(More)
Quiescent adult stem cells reside in specialized niches where they become activated to proliferate and differentiate during tissue homeostasis and injury. How stem cell quiescence is governed is poorly understood. We report here that NFATc1 is preferentially expressed by hair follicle stem cells in their niche, where its expression is activated by BMP(More)
Inflammatory bowel disease (IBD) has been attributed to overexuberant host immunity or the emergence of harmful intestinal flora. The transcription factor T-bet orchestrates inflammatory genetic programs in both adaptive and innate immunity. We describe a profound and unexpected function for T-bet in influencing the behavior of host inflammatory activity(More)
Adaptation to endoplasmic reticulum (ER) stress depends on the activation of an integrated signal transduction pathway known as the unfolded protein response (UPR). Bax inhibitor-1 (BI-1) is an evolutionarily conserved ER-resident protein that suppresses cell death. Here we have investigated the role of BI-1 in the UPR. BI-1 expression suppressed IRE1alpha(More)
Nuclear factor of activated T cells (NFAT) transcription factors regulate gene expression in lymphocytes and control cardiac valve formation. Here, we report that NFATp regulates chondrogenesis in the adult animal. In mice lacking NFATp, resident cells in the extraarticular connective tissues spontaneously differentiate to cartilage. These cartilage cells(More)
Nuclear factor of activated T cells (NF-AT) is the name of a family of four related transcription factors that may be needed for cytokine gene expression in activated lymphocytes. Here we report that mice with a targeted disruption of the NF-ATc gene show an unexpected and dramatic defect in cardiac morphogenesis, with selective absence of the aortic and(More)