L. Feinshreiber

Learn More
Kv channels inhibit release indirectly by hyperpolarizing membrane potential, but the significance of Kv channel interaction with the secretory apparatus is not known. The Kv2.1 channel is commonly expressed in the soma and dendrites of neurons, where it could influence the release of neuropeptides and neurotrophins, and in neuroendocrine cells, where it(More)
Regulation of exocytosis by voltage-gated K(+) channels has classically been viewed as inhibition mediated by K(+) fluxes. We recently identified a new role for Kv2.1 in facilitating vesicle release from neuroendocrine cells, which is independent of K(+) flux. Here, we show that Kv2.1-induced facilitation of release is not restricted to neuroendocrine(More)
Voltage-gated ion channels are well characterized for their function in excitability signals. Accumulating studies, however, have established an ion-independent function for the major classes of ion channels in cellular signaling. During the last few years we established a novel role for Kv2.1, a voltage-gated potassium (Kv) channel, classically known for(More)
The Kv1.1 channel that is expressed throughout the central and peripheral nervous system is known to interact with syntaxin 1A, a member of the exocytosis machinery protein complex. This interaction was previously shown to increase the macroscopic currents of the presynaptic Kv1.1 channel when coexpressed in Xenopus oocytes, while it decreased the unitary(More)
  • 1