Learn More
Gain modulation is a prominent feature of neuronal activity recorded in behaving animals, but the mechanism by which it occurs is unknown. By introducing a barrage of excitatory and inhibitory synaptic conductances that mimics conditions encountered in vivo into pyramidal neurons in slices of rat somatosensory cortex, we show that the gain of a neuronal(More)
Cortical synapses exhibit several forms of short-term plasticity, but the contribution of this plasticity to visual response dynamics is unknown. In part, this is because the simple patterns of stimulation used to probe plasticity in vitro do not correspond to patterns of activity that occur in vivo. We have developed a method of quantitatively(More)
In a number of systems including wind detection in the cricket, visual motion perception and coding of arm movement direction in the monkey and place cell response to position in the rat hippocampus, firing rates in a population of tuned neurons are correlated with a vector quantity. We examine and compare several methods that allow the coded vector to be(More)
We study the impact of correlated neuronal firing rate variability on the accuracy with which an encoded quantity can be extracted from a population of neurons. Contrary to widespread belief, correlations in the variabilities of neuronal firing rates do not, in general, limit the increase in coding accuracy provided by using large populations of encoding(More)
Excitatory and inhibitory synaptic coupling can have counter-intuitive effects on the synchronization of neuronal firing. While it might appear that excitatory coupling would lead to synchronization, we show that frequently inhibition rather than excitation synchronizes firing. We study two identical neurons described by integrate-and-fire models, general(More)
1. We describe a new method, the dynamic clamp, that uses a computer as an interactive tool to introduce simulated voltage and ligand mediated conductances into real neurons. 2. We simulate a gamma-aminobutyric acid (GABA) response of a cultured stomatogastric ganglion neuron to illustrate that the dynamic clamp effectively introduces a conductance into the(More)
Transmission of signals within the brain is essential for cognitive function, but it is not clear how neural circuits support reliable and accurate signal propagation over a sufficiently large dynamic range. Two modes of propagation have been studied: synfire chains, in which synchronous activity travels through feedforward layers of a neuronal network, and(More)
We explore the effects of short-term synaptic depression on the temporal dynamics of V1 responses to visual images by constructing a model simple cell. Synaptic depression is modeled on the basis of previous detailed fits to experimental data. A component of synaptic depression operating in the range of hundreds of milliseconds can account for a number of(More)
During sensory-guided motor tasks, information must be transferred from arrays of neurons coding target location to motor networks that generate and control movement. We address two basic questions about this information transfer. First, what mechanisms assure that the different neural representations align properly so that activity in the sensory network(More)