Learn More
Understanding how microorganisms influence the physical and chemical properties of the subsurface is hindered by our inability to observe microbial dynamics in real time and with high spatial resolution. Here, we investigate the use of noninvasive geophysical methods to monitor biomineralization at the laboratory scale during stimulated sulfate reduction(More)
Calcium carbonate is a secondary mineral precipitate influencing zero valent iron (ZVI) barrier reactivity and hydraulic performance. We conducted column experiments to investigate electrical signatures resulting from concurrent CaCO(3) and iron oxides precipitation under simulated field geochemical conditions. We identified CaCO(3) as a major mineral phase(More)
[1] There is growing interest in the application of electrode‐based measurements for monitoring microbial processes in the Earth using biogeophysical methods. In this study, reactive electrode measurements were combined to electrical geophysical measurements during microbial sulfate reduction occurring in a column of silica beads saturated with natural(More)
Geophysics provides a multidimensional suite of investigative methods that are transforming our ability to see into the very fabric of the subsurface environment, and monitor the dynamics of its fluids and the biogeochemical reactions that occur within it. Here we document how geophysical methods have emerged as valuable tools for investigating shallow(More)
We conducted column studies to investigate the application of a noninvasive electrical method to monitor precipitation in Fe0 columns using (a) Na2SO4 (0.01 M, dissolved oxygen (DO) = 8.8 ppm), and (b) Na2CO3 (0.01 M, DO = 2.3 ppm) solutions. An increase in complex conductivity terms (maximum 40% in sulfate column and 23% in carbonate column) occurred over(More)
[1] The surface pattern of vegetation influences the composition and humification of peat laid down during the development of a bog, producing a subsurface hydrological structure that is expected to affect both the rate and pattern of water flow. Subsurface peat structures are routinely derived from the inspection of peat cores. However, logistical limits(More)
Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used(More)
Mine tailings impoundments are a source of leachates known as acid mine drainage (AMD) which can pose a contamination risk for surrounding surface and groundwater. Methodologies which can help management of this environmental issue are needed. We carried out a laboratory study of the spectral induced polarization (SIP) response of tailings from the Haveri(More)
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation. The main purpose of this report is to provide a vision for the use of geophysical instrumentation in watershed scale hydrological research. The aim of the report is to(More)