Learn More
InSb-based quantum well field-effect transistors, with gate length down to 0.2 /spl mu/m, are fabricated for the first time. Hall measurements show that room temperature electron mobilities over 30,000 cm /sup 2/V/sup -1/s/sup -1/ are achieved with a sheet carrier density over 1/spl times/10/sup 12/ cm/sup -2/ in a modulation doped InSb quantum well with(More)
We present high-field magnetotransport data from a range of 30-nm-wide InSb/InAlSb quantum wells with room-temperature mobilities in excess of 6 m 2 V −1 s −1. Samples with the narrowest Landau level broadening exhibit beating patterns in the magnetoresistance attributed to zero-field spin splitting. Rashba parameters are extracted from a range of samples(More)
Indium antimonide has the highest electron mobility and saturation velocity of any semiconductor, so gives the prospect of extremely high frequency operation with very low power dissipation. We report uncooled transistors with cut-off frequency of 340 GHz at a source-drain voltage of 0.5 V, leading towards this goal
We have used two-color time-resolved spectroscopy to measure the relaxation of electron spin polarizations in a bulk semiconductor. The circularly polarized pump beam induces a polarization either by direct excitation from the valence band, or by free-carrier (Drude) absorption when tuned to an energy below the band gap. We find that the spin relaxation(More)
Indium antimonide has the highest electron mobility and saturation velocity of any semiconductor, so has potential for ultra-high frequency operation with very low power dissipation. Unoptimised, uncooled quantum well heterojunction FETs, with gate length of 85nm, that have a cutoff frequency of 340GHz at only 0.5 V V<sub>ds</sub>. The prospects of this(More)
  • 1