Learn More
We examine the benefits of performing a joint LIGO–Virgo search for transient signals. We do this by adding burst and inspiral signals to 24 hours of simulated detector data. We find significant advantages to performing a joint coincidence analysis, above either a LIGO only or Virgo only search. These include an increased detection efficiency, at a fixed(More)
The gravitational wave detector Virgo is presently being commissioned. A significant part of last year was spent in setting up the cavity length control system. This work was carried out with steps of increasing complexity: locking a simple FabryPerot cavity, then a Michelson interferometer with Fabry-Perot cavities in both arms, and finally recycling the(More)
We present a comparative study of 6 search methods for gravitational wave bursts using simulated LIGO and Virgo noise data. The data's spectra were chosen to follow the design sensitivity of the two 4km LIGO interferometers and the 3km Virgo interferometer. The searches were applied on replicas of the data sets to which 8 different signals were injected.(More)
The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle physics experiment that will study cosmic rays in the ∼ 100 MeV to 1 TeV range and will be installed on the International Space Station (ISS) for at least 3 years. A first version of AMS-02, AMS-01, flew aboard the space shuttle Discovery from June 2 to June 12, 1998, and collected 10 8(More)
The Virgo interferometer, aimed at detecting gravitational waves, is now in a commissioning phase. Measurements of its optical properties are needed for the understanding of the instrument. We present the techniques developed for the measurement of the optical parameters of Virgo. These parameters are compared with the Virgo specifications.
  • 1