L. Barberis

  • Citations Per Year
Learn More
Different physical features of an organism are often measured concurrently, because their correlations can be used as predictors of longevity, future health, or adaptability to an ecological niche. Since, in general, we do not know a priori if the temporal variations in the measured quantities are causally related, it may be useful to have a method that(More)
Tumor growth is often the result of the simultaneous development of two or more cancer cell populations. Crucial to the system evolution are the interactions between these populations. To obtain information about these interactions we apply the recently developed vector universality (VUN) formalism to various instances of competition between tumor(More)
We study a minimal cognitive flocking model, which assumes that the moving entities navigate using the available instantaneous visual information exclusively. The model consists of active particles, with no memory, that interact by a short-ranged, position-based, attractive force, which acts inside a vision cone (VC), and lack velocity-velocity alignment.(More)
The high-temperature Redfield spin-lattice relaxation theory is used for calculating the relaxation times of the different dipolar quasi-invariants in an eight-spin system which represents methyl deuterated para-azoxyanisole (PAAd6) in the nematic phase. According to previous experiments, this system can be considered as composed of weakly coupled pairs of(More)
The nature of the interactions among self-propelled agents (SPA), i.e., topological versus metric or a combination of both types, is a relevant open question in the field of self-organization phenomena. We studied the critical behavior of a Vicsek-like system of SPA given by a group of agents moving at constant speed and interacting among themselves under(More)
  • 1