Learn More
We design an ingenious scheme to realize Haldane's quantum Hall model without Landau levels by using ultracold atoms trapped in an optical lattice. Three standing-wave laser beams are used to construct a wanted honeycomb lattice, where different on site energies in two sublattices required in the model can be implemented through tuning the phase of one(More)
A type of electron pairing model with spin-orbit interactions or Zeeman coupling is solved exactly in the framework of the Richardson ansatz. Based on the exact solutions for the case with spin-orbit interactions, it is shown rigorously that the pairing symmetry is of the p + ip wave and the ground state possesses time-reversal symmetry, regardless of the(More)
We propose an experiment to directly probe the non-abelian statistics of Majorana fermions by braiding them in an s-wave superfluid of ultracold atoms. We show that different orders of braiding operations give orthogonal output states that can be distinguished through Raman spectroscopy. Realization of Majorana states in an s-wave superfluid requires strong(More)
The quantum spin Hall (QSH) effect is known to be unstable to perturbations violating time-reversal symmetry. We show that creating a narrow ferromagnetic region near the edge of a QSH sample can push one of the counterpropagating edge states to the inner boundary of the ferromagnetic region and leave the other at the outer boundary, without changing their(More)
  • 1