Learn More
The cellular character of the adipose tissue of 21 nonobese and 78 obese patients has been examined. Adipose cell size (lipid per cell) was determined in three different subcutaneous and deep fat depots in each patient and the total number of adipose cells in the body estimated by division of total body fat by various combinations of the adipose cell sizes(More)
Insulin stimulates glucose transport in rat adipose cells through the translocation of glucose transporters from an intracellular pool to the plasma membrane. A detailed characterization of the morphology, protein composition and marker enzyme content of subcellular fractions of these cells, prepared by differential ultracentrifugation, and of the(More)
Glucose metabolism and insulin sensitivity of isolated human adipose tissue was studied as a function of adipose cell size and number. Glucose metabolism by these tissues was closely related to the number of cells in the fragment, irrespective of cell size. Adipose cells of obese individuals metabolized glucose to carbon dioxide and triglyceride at rates(More)
The effect of altered dietary carbohydrate and fat content on equilibrium insulin binding to, and glucose transport activity and metabolism in, isolated rat epididymal adipose cells has been studied. Alterations in basal and insulin-stimulated total glucose utilization induced by changes in the ratio of dietary carbohydrate to fat are accounted for by(More)
The effects of high-fat/low-carbohydrate feeding on glucose transport activity and on the concentrations of glucose transport systems in the plasma and low-density microsomal membranes in isolated rat adipose cells have been examined. Glucose transport activity was assessed by measuring 3-O-methylglucose transport and the concentration of glucose transport(More)
Data is presented suggesting that rates of L-arabinose transport, calculated from L-[1-14C]arabinose uptake measurements, can be used as indicators of changes in the rates of glucose transport in isolated rat adipocytes. L-[1-14C]arabinose, at 37 degrees C, was found to be nonmetabolizable and taken up by adipocytes exponentially with time reaching 95% of(More)
The effects of insulin-dependent diabetes mellitus on glucose transport activity and on the concentrations of glucose transport systems in the plasma and low density microsomal membranes in adipose cells isolated from streptozotocin-induced diabetic rats have been examined. Glucose transport activity was assessed by measuring 3-O-methylglucose transport and(More)