Learn More
In order to examine the possible involvement of the 20S proteasome in degradation of oxidized proteins, the effects of different cadmium concentrations on its activities, protein abundance and oxidation level were studied using maize (Zea mays L.) leaf segments. The accumulation of carbonylated and ubiquitinated proteins was also investigated. Treatment(More)
The production of reactive oxygen species (ROS) in specific regions of Salix seedlings roots seems essential for the normal growth of this organ. We examined the role of different ROS in the control of root development in Salix nigra seedlings, and explored possible mechanisms involved in the regulation of ROS generation and action. Root growth was not(More)
The effect of oxidative stress induced by cadmium on growth parameters and on the balance between protein synthesis and degradation was studied in sunflower (Helianthus annuus L.) leaves. Plants were germinated for 10 days and then transferred to hydroponic medium devoid (control) or containing 100, 200 and 300μM CdCl2. Analyses were performed between days(More)
Copper is an essential trace element for living organisms, in excess, can be toxic to the cell because of its capacity to generate reactive oxygen species (ROS). Catalase (CAT) catalyzes the dismutation of hydrogen peroxide into water and dioxygen and in plants it is located in peroxisomes and glyoxysomes. Different metals can induce changes in CAT(More)
Plant proteolytic system includes proteases, mainly localized inside the organelles, and the ubiquitin-proteasome pathway in both, the cytoplasm and the nucleus. It was recently demonstrated that under severe Cd stress sunflower (Helianthus annuus L.) proteasome activity is reduced and this results in accumulation of oxidized proteins. In order to test if(More)
We previously showed that the antimicrobial peptide microcin J25 induced the over-production of reactive oxygen species with the concomitant release of cytochrome c from rat heart mitochondria via the opening of the mitochondrial permeability transition pore. Here, we were able to demonstrate that indeed, as a consequence of the oxidative burst, MccJ25(More)
Abiotic stress is greatly associated with plant growth inhibition and redox cell imbalance. In the present work, we have investigated in which way oxidative posttranslational modifications (PTM) of proteins related to cell cycle may be implicated in post-germinative root growth reduction caused by cadmium, by methyl viologen (MV) and by hydrogen peroxide(More)
The role of NADPH oxidases under cadmium (Cd) toxicity was studied using Arabidopsis thaliana mutants AtrbohC, AtrbohD and AtrbohF, which were grown under hydroponic conditions with 25 and 100 μM Cd for 1 and 5 days. Cadmium reduced the growth of leaves in WT, AtrbohC and D, but not in AtrbohF. A time-dependent increase in H2 O2 and lipid peroxidation was(More)
In this investigation we analyzed in detail the consequences of water deficit during the first 4 days of wheat development, focusing on root growth as affected by eventual changes in cell cycle regulation and oxidative processes. Root elongation decreased under water restriction in correlation with the intensity of this limitation, but the total number of(More)
Catalase (CAT) dismutates the reactive oxygen species H2O2 into water and dioxygen and in plants; it is located in peroxisomes and glyoxysomes. In the present study, we investigated the effect of cadmium (a well-known oxidative stress inducer) on catalase in roots and cotyledons of developing sunflower seedlings, at 10 microM and 100 microM. Although(More)